A Machine Learning Approach to Predict Timing Delays During FPGA Placement

T. Martin, G. Grewal, S. Areibi
{"title":"A Machine Learning Approach to Predict Timing Delays During FPGA Placement","authors":"T. Martin, G. Grewal, S. Areibi","doi":"10.1109/IPDPSW52791.2021.00026","DOIUrl":null,"url":null,"abstract":"Timing-driven placement tools for FPGAs rely on the availability of accurate delay estimates for nets in order to identify and optimize critical paths. In this paper, we propose a machine-learning framework for predicting net delay to reduce miscorrelation between placement and detailed-routing. Features relevant to timing delay are engineered based on characteristics of nets, available routing resources, and the behavior of the detailed router. Our results show an accuracy above 94%, and when integrated within an FPGA analytical placer Critical Path Delay (CPD) is improved by 10% on average compared to a static delay model.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Timing-driven placement tools for FPGAs rely on the availability of accurate delay estimates for nets in order to identify and optimize critical paths. In this paper, we propose a machine-learning framework for predicting net delay to reduce miscorrelation between placement and detailed-routing. Features relevant to timing delay are engineered based on characteristics of nets, available routing resources, and the behavior of the detailed router. Our results show an accuracy above 94%, and when integrated within an FPGA analytical placer Critical Path Delay (CPD) is improved by 10% on average compared to a static delay model.
一种预测FPGA放置时间延迟的机器学习方法
时序驱动的fpga放置工具依赖于网络的准确延迟估计,以识别和优化关键路径。在本文中,我们提出了一个用于预测净延迟的机器学习框架,以减少放置和详细路由之间的不相关。与时间延迟相关的特征是基于网络的特征、可用的路由资源和详细路由器的行为来设计的。我们的结果表明,准确度高于94%,并且当集成在FPGA分析placer中时,与静态延迟模型相比,关键路径延迟(CPD)平均提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信