Detecting spamming reviews using long short-term memory recurrent neural network framework

ICEEG '18 Pub Date : 2018-06-13 DOI:10.1145/3234781.3234794
Chih-Chien Wang, Min-Yuh Day, Chien-Chang Chen, Jia-Wei Liou
{"title":"Detecting spamming reviews using long short-term memory recurrent neural network framework","authors":"Chih-Chien Wang, Min-Yuh Day, Chien-Chang Chen, Jia-Wei Liou","doi":"10.1145/3234781.3234794","DOIUrl":null,"url":null,"abstract":"Some unethical companies may hire workers (fake review spammers) to write reviews to influence consumers' purchasing decisions. However, it is not easy for consumers to distinguish real reviews posted by ordinary users or fake reviews post by fake review spammers. In this current study, we attempt to use Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) framework to detect spammers. In the current, we used a real case of fake review in Taiwan, and compared the analytical results of the current study with results of previous literature. We found that the LSTM method was more effective than Support Vector Machine (SVM) for detecting fake reviews. We concluded that deep learning could be use to detect fake reviews.","PeriodicalId":386149,"journal":{"name":"ICEEG '18","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICEEG '18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234781.3234794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Some unethical companies may hire workers (fake review spammers) to write reviews to influence consumers' purchasing decisions. However, it is not easy for consumers to distinguish real reviews posted by ordinary users or fake reviews post by fake review spammers. In this current study, we attempt to use Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) framework to detect spammers. In the current, we used a real case of fake review in Taiwan, and compared the analytical results of the current study with results of previous literature. We found that the LSTM method was more effective than Support Vector Machine (SVM) for detecting fake reviews. We concluded that deep learning could be use to detect fake reviews.
利用长短期记忆递归神经网络框架检测垃圾评论
一些不道德的公司可能会雇佣员工(虚假评论垃圾邮件发送者)撰写评论,以影响消费者的购买决定。然而,消费者很难区分普通用户发布的真实评论和虚假评论发送者发布的虚假评论。在本研究中,我们尝试使用长短期记忆(LSTM)递归神经网络(RNN)框架来检测垃圾邮件发送者。在本研究中,我们使用了一个真实的台湾虚假评论案例,并将本研究的分析结果与以往文献的结果进行了比较。我们发现LSTM方法在检测虚假评论方面比支持向量机(SVM)更有效。我们的结论是,深度学习可以用来检测虚假评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信