Agent based simulation of the evolution of society as an alternate maximzation problem

Amartya Sanyal, Sanjana Garg, Asim Unmesh
{"title":"Agent based simulation of the evolution of society as an alternate maximzation problem","authors":"Amartya Sanyal, Sanjana Garg, Asim Unmesh","doi":"10.1109/BESC.2017.8256376","DOIUrl":null,"url":null,"abstract":"Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the evolution of human society, as a complex adaptive system, is a task that has been looked upon from various angles. In this paper, we simulate an agent-based model with a high enough population tractably. To do this, we characterize an entity called society, which helps us reduce the complexity of each step from O(n2) to O(n). We propose a very realistic setting, where we design a joint alternate maximization step algorithm to maximize a certain fitness function, which we believe simulates the way societies develop. Our key contributions include (i) proposing a novel protocol for simulating the evolution of a society with cheap, non-optimal joint alternate maximization steps (ii) providing a framework for carrying out experiments that adhere to this joint-optimization simulation framework (iii) carrying out experiments to show that it makes sense empirically (iv) providing an alternate justification for the use of society in the simulations.
基于智能体的交替最大化问题的社会进化模拟
理解人类社会作为一个复杂的适应系统的进化,是一项从不同角度看待的任务。在本文中,我们模拟了一个具有足够高的可跟踪人口的基于智能体的模型。为了做到这一点,我们描述了一个称为社会的实体,它帮助我们减少了从O(n2)到O(n)的每一步的复杂性。我们提出了一个非常现实的设置,我们设计了一个联合交替最大化步骤算法来最大化某个适应度函数,我们认为这模拟了社会发展的方式。我们的主要贡献包括(i)提出了一种新的协议,用于模拟具有廉价,非最优联合替代最大化步骤的社会进化;(ii)提供了一个框架,用于执行坚持该联合优化模拟框架的实验;(iii)进行实验以证明它在经验上是有意义的;(iv)为在模拟中使用社会提供了另一种理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信