Numerical Solution to Two-Dimensional Freezing and Subsequent Defrosting of Logs

N. Deliiski, N. Tumbarkova
{"title":"Numerical Solution to Two-Dimensional Freezing and Subsequent Defrosting of Logs","authors":"N. Deliiski, N. Tumbarkova","doi":"10.5772/intechopen.84706","DOIUrl":null,"url":null,"abstract":"Two-dimensional mutually connected mathematical models have been created, solved, and verified for the transient non-linear heat conduction in logs during their freezing and subsequent defrosting. The models reflect the influence of the internal sources of latent heat of both the free and bound water on the logs ’ freezing process and also the impact of the temperature on the fiber saturation point of wood species, with whose participation the current values of the thermo-physical characteristics in each separate volume point of the subjected to freezing and subsequent defrosting logs are computed. The chapter presents solutions of the models with explicit form of the finite-difference method and their validation towards own experimental studies. Results from experimental and simulative investigation of 2D non-stationary temperature distribution in the longitudinal section of beech and pine logs with a diameter of 0.24 m and length of 0.48 m during their many hours freezing in a freezer and subsequent defrosting at room temperature are presented, visualized, and analyzed.","PeriodicalId":321588,"journal":{"name":"Heat and Mass Transfer - Advances in Science and Technology Applications","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat and Mass Transfer - Advances in Science and Technology Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.84706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Two-dimensional mutually connected mathematical models have been created, solved, and verified for the transient non-linear heat conduction in logs during their freezing and subsequent defrosting. The models reflect the influence of the internal sources of latent heat of both the free and bound water on the logs ’ freezing process and also the impact of the temperature on the fiber saturation point of wood species, with whose participation the current values of the thermo-physical characteristics in each separate volume point of the subjected to freezing and subsequent defrosting logs are computed. The chapter presents solutions of the models with explicit form of the finite-difference method and their validation towards own experimental studies. Results from experimental and simulative investigation of 2D non-stationary temperature distribution in the longitudinal section of beech and pine logs with a diameter of 0.24 m and length of 0.48 m during their many hours freezing in a freezer and subsequent defrosting at room temperature are presented, visualized, and analyzed.
原木二维冻结及后续除霜的数值解
建立、求解并验证了原木冻结及解冻过程中瞬态非线性热传导的二维相互关联数学模型。这些模型反映了自由水和束缚水的内部潜热源对原木冻结过程的影响,以及温度对木材纤维饱和点的影响,并计算了冻结和随后解冻原木的每个单独体积点的热物理特性的当前值。本章以有限差分法的显式形式给出了模型的解,并对自己的实验研究进行了验证。本文对直径为0.24 m、长度为0.48 m的山毛榉和松木在冷冻室冷冻数小时并随后在室温下解冻的纵向截面上的二维非平稳温度分布进行了实验和模拟研究,并对其结果进行了可视化分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信