A1-homotopy invariance of algebraic K-theory with coefficients and Kleinian singularities

Gonçalo Tabuada
{"title":"A1-homotopy invariance of algebraic K-theory with coefficients and Kleinian singularities","authors":"Gonçalo Tabuada","doi":"10.2140/AKT.2017.2.1","DOIUrl":null,"url":null,"abstract":"C. Weibel and Thomason-Trobaugh proved (under some assumptions) that algebraic K-theory with coefficients is A1-homotopy invariant. In this article we generalize this result from schemes to the broad setting of dg categories. Along the way, we extend Bass-Quillen's fundamental theorem as well as Stienstra's foundational work on module structures over the big Witt ring to the setting of dg categories. Among other cases, the above A1-homotopy invariance result can now be applied to sheaves of (not necessarily commutative) dg algebras over stacks. As an application, we compute the algebraic K-theory with coefficients of dg cluster categories using solely the kernel and cokernel of the Coxeter matrix. This leads to a complete computation of the algebraic K-theory with coefficients of the Kleinian singularities parametrized by the simply laced Dynkin diagrams. As a byproduct, we obtain some vanishing and divisibility properties of algebraic K-theory (without coefficients).","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2017.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

C. Weibel and Thomason-Trobaugh proved (under some assumptions) that algebraic K-theory with coefficients is A1-homotopy invariant. In this article we generalize this result from schemes to the broad setting of dg categories. Along the way, we extend Bass-Quillen's fundamental theorem as well as Stienstra's foundational work on module structures over the big Witt ring to the setting of dg categories. Among other cases, the above A1-homotopy invariance result can now be applied to sheaves of (not necessarily commutative) dg algebras over stacks. As an application, we compute the algebraic K-theory with coefficients of dg cluster categories using solely the kernel and cokernel of the Coxeter matrix. This leads to a complete computation of the algebraic K-theory with coefficients of the Kleinian singularities parametrized by the simply laced Dynkin diagrams. As a byproduct, we obtain some vanishing and divisibility properties of algebraic K-theory (without coefficients).
具有系数和Kleinian奇点的代数k理论的a1 -同伦不变性
C. Weibel和Thomason-Trobaugh(在某些假设下)证明了带系数的代数k理论是a1 -同伦不变的。在本文中,我们将这一结果从方案推广到dg范畴的广义集。在此过程中,我们将Bass-Quillen的基本定理以及Stienstra关于大威特环上模结构的基础工作扩展到dg范畴的集合。在其他情况下,上面的a1 -同伦不变性结果现在可以应用于堆栈上的dg代数(不一定是交换的)。作为一个应用,我们仅利用Coxeter矩阵的核和核,计算了dg类范畴系数的代数k理论。这导致了一个完整的代数k理论的计算,其中Kleinian奇点的系数由简单的带条纹的Dynkin图参数化。作为一个副产品,我们得到了代数k理论(无系数)的一些消失性和可整除性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信