Calibration of kinematic body sensor networks: Kinect-based gauging of data gloves “in the wild”

A. Vicente, A. Faisal
{"title":"Calibration of kinematic body sensor networks: Kinect-based gauging of data gloves “in the wild”","authors":"A. Vicente, A. Faisal","doi":"10.1109/BSN.2013.6575526","DOIUrl":null,"url":null,"abstract":"Our hands generic precision and agility is yet unmatched by technology, hence the quantitative study of its daily life kinematics is fundamental to neurology/prosthetics & robotics and creative industries. State-of-the-art solutions capturing hand movements ‘in the wild’ requires wearable body sensor networks: data gloves. Yet, fast-accurate calibration is challenging due to variability in hand anatomy and complexity of finger joints. We present here novel methods for calibration using streaming information from depth cameras (Microsoft Kinect). Our low-cost system calibrates the data glove by observing a user wiggling their hands while wearing data gloves. Using inverse kinematics we reconstruct in real-time hand configuration, enabling augmented reality by superimposing the virtual and real hand veridically. We achieve accuracies of ±5 degrees RMSE over all 21 joints, almost 20% more accurate than standard calibration methods and accurately capture touching of fingertips and thumb — our benchmark test unmatched by other calibration methods.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Our hands generic precision and agility is yet unmatched by technology, hence the quantitative study of its daily life kinematics is fundamental to neurology/prosthetics & robotics and creative industries. State-of-the-art solutions capturing hand movements ‘in the wild’ requires wearable body sensor networks: data gloves. Yet, fast-accurate calibration is challenging due to variability in hand anatomy and complexity of finger joints. We present here novel methods for calibration using streaming information from depth cameras (Microsoft Kinect). Our low-cost system calibrates the data glove by observing a user wiggling their hands while wearing data gloves. Using inverse kinematics we reconstruct in real-time hand configuration, enabling augmented reality by superimposing the virtual and real hand veridically. We achieve accuracies of ±5 degrees RMSE over all 21 joints, almost 20% more accurate than standard calibration methods and accurately capture touching of fingertips and thumb — our benchmark test unmatched by other calibration methods.
运动学身体传感器网络的校准:“野外”数据手套的运动学测量
我们的手的一般精度和敏捷性是技术无法比拟的,因此对其日常生活运动学的定量研究是神经病学/假肢和机器人技术以及创意产业的基础。最先进的解决方案需要可穿戴的身体传感器网络:数据手套。然而,由于手部解剖结构的变化和手指关节的复杂性,快速准确的校准是具有挑战性的。我们在这里提出了一种新的校准方法,使用来自深度相机(微软Kinect)的流信息。我们的低成本系统通过观察用户戴着数据手套时摆动双手来校准数据手套。利用运动学逆解方法实时重构手的构型,实现虚拟手与真实手的真实叠加,实现增强现实。我们在所有21个关节中实现了±5度RMSE的精度,比标准校准方法精确近20%,并准确捕获指尖和拇指的触摸-我们的基准测试是其他校准方法无法比拟的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信