Optical Sensor Behavior Prediction using LSTM Neural Network

M. Zaghloul, Amr M. Hassan, D. Carpenter, P. Calderoni, J. Daw, Kevin P. Chen
{"title":"Optical Sensor Behavior Prediction using LSTM Neural Network","authors":"M. Zaghloul, Amr M. Hassan, D. Carpenter, P. Calderoni, J. Daw, Kevin P. Chen","doi":"10.1109/IPCon.2019.8908337","DOIUrl":null,"url":null,"abstract":"Optical fiber-based-sensors proved capable of enduring various harsh environments. Long-short-term memory (LSTM) neural-networks are often used for datasets with long-dependences. Here, rare FBG measurements collected from a neutron reactor core were used to build a neural-network capable of predicting the future events inside the reactor.","PeriodicalId":314151,"journal":{"name":"2019 IEEE Photonics Conference (IPC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCon.2019.8908337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optical fiber-based-sensors proved capable of enduring various harsh environments. Long-short-term memory (LSTM) neural-networks are often used for datasets with long-dependences. Here, rare FBG measurements collected from a neutron reactor core were used to build a neural-network capable of predicting the future events inside the reactor.
基于LSTM神经网络的光学传感器行为预测
基于光纤的传感器被证明能够承受各种恶劣环境。长短期记忆(LSTM)神经网络通常用于具有长依赖关系的数据集。在这里,从中子反应堆堆芯收集的罕见的FBG测量数据被用来建立一个能够预测反应堆内部未来事件的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信