Ryan Craker, B. Johnson, Haripriya Sakthivel, D. Cappelleri
{"title":"Design of a Miniaturized Actuation System for Robotic Lumbar Discectomy Tools","authors":"Ryan Craker, B. Johnson, Haripriya Sakthivel, D. Cappelleri","doi":"10.1115/detc2020-22319","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present the design of a miniaturized actuation system for robotic lumbar discectomy tools. Lumbar dis-cectomy is one of the most common types of back surgery in the United States. Our previous work proposed a new robotic lumbar discectomy (RLD) system consisting of teleoperated articulated instruments inside a robotic cannula for performing this operation. The robotic cannula is used for the independent translation and rotation of the instruments residing in it. Due to the large servo-motor based actuation systems of the initially developed instruments, it was not possible to achieve a fully integrated RLD system. Here, we present the design of a shape memory alloy actuation system for teleoperating RLD tools that allows full integration with the robotic cannula. More than a 10X size reduction in footprint has been achieved. Experimental results show that SMA-driven actuation system meets the instrument range-of-motion, manipulation, and grasping force requirements. Integrated system tests demonstrate the successful operation of the miniaturized RDL tools with the robotic cannula.","PeriodicalId":365283,"journal":{"name":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we present the design of a miniaturized actuation system for robotic lumbar discectomy tools. Lumbar dis-cectomy is one of the most common types of back surgery in the United States. Our previous work proposed a new robotic lumbar discectomy (RLD) system consisting of teleoperated articulated instruments inside a robotic cannula for performing this operation. The robotic cannula is used for the independent translation and rotation of the instruments residing in it. Due to the large servo-motor based actuation systems of the initially developed instruments, it was not possible to achieve a fully integrated RLD system. Here, we present the design of a shape memory alloy actuation system for teleoperating RLD tools that allows full integration with the robotic cannula. More than a 10X size reduction in footprint has been achieved. Experimental results show that SMA-driven actuation system meets the instrument range-of-motion, manipulation, and grasping force requirements. Integrated system tests demonstrate the successful operation of the miniaturized RDL tools with the robotic cannula.