Confidence intervals from local minimums of objective function

A. Dermoune, Daoud Ounaissi, Yousri Slaoui
{"title":"Confidence intervals from local minimums of objective function","authors":"A. Dermoune, Daoud Ounaissi, Yousri Slaoui","doi":"10.21203/rs.3.rs-2357034/v1","DOIUrl":null,"url":null,"abstract":"The weighted median plays a central role in the least absolute deviations (LAD). We propose a nonlinear regression using (LAD). Our objective function $f(a, l, s)$ is non-convex with respect to the parameters a, l, s, and is such that for each fixed l, s the minimizer of $a\\to f (a, l, s)$ is the weighted median $med(x(l, s), w(l, s))$ of a sequence $x(l, s)$ endowed with the weights $w(l, s)$ (all depend on $l$, $s$). We analyse and compare theoretically the minimizers of the function $(a, l, s)\\to f (a, l, s)$ and the surface $(l, s) \\to f (med(x(l, s), w(l, s)), l, s)$. As a numerical application we propose to fit the daily infections of COVID 19 in China using Gaussian model. We derive confident interval for the daily infections from each local minimum.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-2357034/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The weighted median plays a central role in the least absolute deviations (LAD). We propose a nonlinear regression using (LAD). Our objective function $f(a, l, s)$ is non-convex with respect to the parameters a, l, s, and is such that for each fixed l, s the minimizer of $a\to f (a, l, s)$ is the weighted median $med(x(l, s), w(l, s))$ of a sequence $x(l, s)$ endowed with the weights $w(l, s)$ (all depend on $l$, $s$). We analyse and compare theoretically the minimizers of the function $(a, l, s)\to f (a, l, s)$ and the surface $(l, s) \to f (med(x(l, s), w(l, s)), l, s)$. As a numerical application we propose to fit the daily infections of COVID 19 in China using Gaussian model. We derive confident interval for the daily infections from each local minimum.
目标函数局部极小值的置信区间
加权中位数在最小绝对偏差(LAD)中起着核心作用。我们提出了一个非线性回归使用(LAD)。我们的目标函数$f(a, l, s)$是关于参数a, l, s的非凸函数,并且对于每个固定的l, s, $a\到f(a, l, s)$的最小值$a\到f(a, l, s)$的加权中值$med(x(l, s), w(l, s))$赋予了权重$w(l, s)$(都依赖于$l$, $s$)。我们从理论上分析和比较了函数$(a, l, s)\到f (a, l, s)$和曲面$(l, s)\到f (med(x(l, s), w(l, s)), l, s)$的极小值。作为数值应用,我们建议使用高斯模型拟合中国COVID - 19的日感染数。我们从每个局部最小值推导出日感染的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信