Machine vision for the quality assessment of emulsions in pharmaceutical processing

S. Unnikrishnan, J. Donovan, Russell Macpherson, D. Tormey
{"title":"Machine vision for the quality assessment of emulsions in pharmaceutical processing","authors":"S. Unnikrishnan, J. Donovan, Russell Macpherson, D. Tormey","doi":"10.1109/UV.2018.8642158","DOIUrl":null,"url":null,"abstract":"Emulsion quality evaluation using machine vision techniques depends on the efficiency of the image segmentation algorithms. Two different machine vision techniques are investigated to determine their competency in detecting droplets from in-process microscopic images of a cream emulsion. Histogram-based segmentation shows promising potential compared to edge and symmetry detection. A statistical study of the droplet characteristics was conducted. The results demonstrate that the histogram-based approach is more proficient in the progressive analysis of droplet evolution during emulsification. A real-time integration of the technique is proposed, as a soft sensor, to predict the optimum process time and to increase manufacturing efficiency in chemical industries.","PeriodicalId":110658,"journal":{"name":"2018 4th International Conference on Universal Village (UV)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV.2018.8642158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Emulsion quality evaluation using machine vision techniques depends on the efficiency of the image segmentation algorithms. Two different machine vision techniques are investigated to determine their competency in detecting droplets from in-process microscopic images of a cream emulsion. Histogram-based segmentation shows promising potential compared to edge and symmetry detection. A statistical study of the droplet characteristics was conducted. The results demonstrate that the histogram-based approach is more proficient in the progressive analysis of droplet evolution during emulsification. A real-time integration of the technique is proposed, as a soft sensor, to predict the optimum process time and to increase manufacturing efficiency in chemical industries.
药品加工中乳剂质量评价的机器视觉
利用机器视觉技术评价乳化液质量取决于图像分割算法的效率。研究了两种不同的机器视觉技术,以确定它们在奶油乳液的过程显微图像中检测液滴的能力。与边缘检测和对称检测相比,基于直方图的分割显示出很好的潜力。对液滴的特性进行了统计研究。结果表明,基于直方图的方法更能熟练地分析乳化过程中液滴的演化过程。提出了一种实时集成技术,作为一种软传感器,用于预测化工行业的最佳工艺时间,提高生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信