Approximate retrieval approaches for incremental similarity searches

A. Lumini, D. Maio
{"title":"Approximate retrieval approaches for incremental similarity searches","authors":"A. Lumini, D. Maio","doi":"10.1109/MMCS.1999.778580","DOIUrl":null,"url":null,"abstract":"Similarity selections of objects in a very large database can be executed by an incremental search on the basis of their distance from a given point. To cope with this problem, indexing support and retrieval strategies, that are able to ensure good performance for different kinds of queries, need to be developed. In this work we propose incremental and approximate retrieval approaches for searching points in a d-dimensional metric space. Four new retrieval algorithms coupled with dynamical disk-based spatial structures are discussed and some experimental results are presented. In particular, two strategies named Chessboard and City Block respectively, implement approximate incremental searches on a grid file data structure and the others, heap queue and virtual tree, apply to hierarchical data structures such us the R-tree.","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.778580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Similarity selections of objects in a very large database can be executed by an incremental search on the basis of their distance from a given point. To cope with this problem, indexing support and retrieval strategies, that are able to ensure good performance for different kinds of queries, need to be developed. In this work we propose incremental and approximate retrieval approaches for searching points in a d-dimensional metric space. Four new retrieval algorithms coupled with dynamical disk-based spatial structures are discussed and some experimental results are presented. In particular, two strategies named Chessboard and City Block respectively, implement approximate incremental searches on a grid file data structure and the others, heap queue and virtual tree, apply to hierarchical data structures such us the R-tree.
增量相似度搜索的近似检索方法
在一个非常大的数据库中,对象的相似性选择可以通过基于它们与给定点的距离的增量搜索来执行。为了解决这个问题,需要开发索引支持和检索策略,以确保不同类型查询的良好性能。在这项工作中,我们提出了在d维度量空间中搜索点的增量和近似检索方法。讨论了四种新的基于动态磁盘空间结构的检索算法,并给出了一些实验结果。特别是,棋盘和城市块两种策略分别在网格文件数据结构上实现了近似增量搜索,而堆队列和虚拟树则适用于r树等分层数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信