SAR image classification using a neural classifier based on Fisher criterion

Alexsandro M. Jacob, E. M. Hemerly, D. Fernandes
{"title":"SAR image classification using a neural classifier based on Fisher criterion","authors":"Alexsandro M. Jacob, E. M. Hemerly, D. Fernandes","doi":"10.1109/SBRN.2002.1181464","DOIUrl":null,"url":null,"abstract":"A supervised neural classifier based on Fisher criterion is implemented to classify two regions in a real speckled SAR image. Regions around pre-classified pixels are presented to train the neural network that learns a sub-optimal set of masks via back-propagation algorithm. Classification performance is evaluated by using the ground truth. Results with higher than 90% of correct classification are obtained. The results are also compared with a statistical classifier based on Kullback-Liebler distance via the Kappa coefficient.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A supervised neural classifier based on Fisher criterion is implemented to classify two regions in a real speckled SAR image. Regions around pre-classified pixels are presented to train the neural network that learns a sub-optimal set of masks via back-propagation algorithm. Classification performance is evaluated by using the ground truth. Results with higher than 90% of correct classification are obtained. The results are also compared with a statistical classifier based on Kullback-Liebler distance via the Kappa coefficient.
基于Fisher准则的SAR图像分类器
提出了一种基于Fisher准则的监督神经分类器,用于对SAR斑点图像中的两个区域进行分类。给出预分类像素周围的区域,通过反向传播算法训练神经网络学习次优掩码集。分类性能通过使用地面真值来评估。结果分类正确率在90%以上。结果还通过Kappa系数与基于Kullback-Liebler距离的统计分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信