{"title":"CFD analysis of the thermal state of an overhead line conductor","authors":"I. Makhkamova, P. Taylor, J. Bumby, K. Mahkamov","doi":"10.1109/UPEC.2008.4651567","DOIUrl":null,"url":null,"abstract":"At present commercial CFD packages such as Fluent, ANSYS CFX, and Star-CD are widely used for investigation of heat and mass transfer processes in various fields of engineering. These codes can also be successfully applied to estimate the thermal state of major components of electrical distribution networks, such as overhead lines, underground cables and transformers. This paper presents some results obtained from numerical modelling of the temperature field in the Lynx overhead conductor in both cross and parallel wind conditions using 2-D and 3-D CFD models. The CFD results obtained demonstrate that for an applied load of 433 A and considering the summer rating (Lynx conductors ER P27 [1]) the maximum temperature in the conductor is considerably lower (16 degrees) than the prescribed design conductor temperature. This indicates that there is headroom for increasing the ampacity of the conductor.","PeriodicalId":287461,"journal":{"name":"2008 43rd International Universities Power Engineering Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 43rd International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2008.4651567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
At present commercial CFD packages such as Fluent, ANSYS CFX, and Star-CD are widely used for investigation of heat and mass transfer processes in various fields of engineering. These codes can also be successfully applied to estimate the thermal state of major components of electrical distribution networks, such as overhead lines, underground cables and transformers. This paper presents some results obtained from numerical modelling of the temperature field in the Lynx overhead conductor in both cross and parallel wind conditions using 2-D and 3-D CFD models. The CFD results obtained demonstrate that for an applied load of 433 A and considering the summer rating (Lynx conductors ER P27 [1]) the maximum temperature in the conductor is considerably lower (16 degrees) than the prescribed design conductor temperature. This indicates that there is headroom for increasing the ampacity of the conductor.