Camera Localization Based on Belief Clustering

Huiqin Chen, Emanuel Aldea, S. L. Hégarat-Mascle
{"title":"Camera Localization Based on Belief Clustering","authors":"Huiqin Chen, Emanuel Aldea, S. L. Hégarat-Mascle","doi":"10.23919/FUSION45008.2020.9190358","DOIUrl":null,"url":null,"abstract":"This work deals with epipole estimation related to egocentric camera localization in surveillance and security applications. Matching visual features in the images provides some evidences for various solutions, so that epipole localization can be addressed as a fusion task with a large number of sources including outlier ones. In order to deal with source imprecision and uncertainty, we rely on the belief function theory and a 2D framework suited for our application. In this framework, we address the challenges introduced by a large number of sources with a strategy based on clustering and intra-cluster fusion. The proposed method exhibits more robustness in terms of accuracy and precision when compared on real data with the standard algorithms which provide single solution. Since we provide a Basic Belief Assignment as a result, our strategy is particularly adapted for the prospective combination with additional sources of information.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with epipole estimation related to egocentric camera localization in surveillance and security applications. Matching visual features in the images provides some evidences for various solutions, so that epipole localization can be addressed as a fusion task with a large number of sources including outlier ones. In order to deal with source imprecision and uncertainty, we rely on the belief function theory and a 2D framework suited for our application. In this framework, we address the challenges introduced by a large number of sources with a strategy based on clustering and intra-cluster fusion. The proposed method exhibits more robustness in terms of accuracy and precision when compared on real data with the standard algorithms which provide single solution. Since we provide a Basic Belief Assignment as a result, our strategy is particularly adapted for the prospective combination with additional sources of information.
基于信念聚类的摄像机定位
这项工作涉及极点估计相关的自中心摄像机定位在监视和安全应用。匹配图像中的视觉特征为各种解决方案提供了证据,从而将极点定位作为包含离群点在内的大量源的融合任务。为了处理源的不精确和不确定性,我们依赖于信念函数理论和适合我们应用的二维框架。在这个框架中,我们采用基于集群和集群内融合的策略来解决大量数据源带来的挑战。与提供单一解的标准算法相比,该方法在精度和精度方面都具有更强的鲁棒性。由于我们提供了一个基本信念分配,因此我们的策略特别适合于与其他信息来源的预期组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信