The Wiener Index of the Composition of Two Planar Graphs

Mohamed Essalih
{"title":"The Wiener Index of the Composition of Two Planar Graphs","authors":"Mohamed Essalih","doi":"10.1109/PICICT.2013.15","DOIUrl":null,"url":null,"abstract":"The Wiener index, is the first, and also one of the most important topological indices of chemical graphs. Furthermore, there are many situations in communication, facility location, cryptology, architecture etc, where the Wiener index of the corresponding graph or the average distance is of great interest. One of the problems, for example, is to find a spanning tree with minimum average distance. In this paper we present the notion of the composition of two planar graphs, through some examples and, we will focus to calculate the Wiener index for the composition of two cycle planar graphs W(Cn1 °Cn2 ) and the Wiener index for the composition of cycle planar graph and path planar graph W(Cn1°Pn2 ), using oar's theorem.","PeriodicalId":320407,"journal":{"name":"2013 Palestinian International Conference on Information and Communication Technology","volume":"1995 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Palestinian International Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICICT.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Wiener index, is the first, and also one of the most important topological indices of chemical graphs. Furthermore, there are many situations in communication, facility location, cryptology, architecture etc, where the Wiener index of the corresponding graph or the average distance is of great interest. One of the problems, for example, is to find a spanning tree with minimum average distance. In this paper we present the notion of the composition of two planar graphs, through some examples and, we will focus to calculate the Wiener index for the composition of two cycle planar graphs W(Cn1 °Cn2 ) and the Wiener index for the composition of cycle planar graph and path planar graph W(Cn1°Pn2 ), using oar's theorem.
两个平面图组成的维纳指数
维纳指数是化学图的第一个,也是最重要的拓扑指数之一。此外,在通信、设施位置、密码学、建筑等许多场合,对应图的维纳索引或平均距离都是很有意义的。例如,其中一个问题是找到一个平均距离最小的生成树。本文提出了两个平面图形复合的概念,并通过一些实例,着重利用oar定理计算了两个环平面图形复合的Wiener指数W(Cn1°Cn2)和环平面图形与路径平面图形复合的Wiener指数W(Cn1°Pn2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信