Mapping of backpropagation learning onto distributed memory multiprocessors

S. Mahapatra, R. Mahapatra
{"title":"Mapping of backpropagation learning onto distributed memory multiprocessors","authors":"S. Mahapatra, R. Mahapatra","doi":"10.1109/ICAPP.1995.472188","DOIUrl":null,"url":null,"abstract":"This paper presents a mapping scheme for parallel pipelined execution of the Backpropagation Learning Algorithm on distributed memory multiprocessors (DMMs). The proposed implementation exhibits training set parallelism that involves batch updating. Simple algorithms have been presented, which allow the data transfer involved in both forward and backward executions phases of the backpropagation algorithm to be carried out with a small communication overhead. The effectiveness of our mapping has been illustrated, by estimating the speedup of a proposed implementation on an array of T-805 transputers.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a mapping scheme for parallel pipelined execution of the Backpropagation Learning Algorithm on distributed memory multiprocessors (DMMs). The proposed implementation exhibits training set parallelism that involves batch updating. Simple algorithms have been presented, which allow the data transfer involved in both forward and backward executions phases of the backpropagation algorithm to be carried out with a small communication overhead. The effectiveness of our mapping has been illustrated, by estimating the speedup of a proposed implementation on an array of T-805 transputers.<>
反向传播学习在分布式内存多处理器上的映射
本文提出了一种在分布式存储多处理器(dmm)上并行流水线执行反向传播学习算法的映射方案。提出的实现展示了涉及批量更新的训练集并行性。提出了一种简单的算法,它允许反向传播算法的前向和后向执行阶段的数据传输以很小的通信开销进行。通过估计在T-805转发器阵列上提出的实现的加速,说明了我们映射的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信