Manual Clustering Refinement using Interaction with Blobs

Christian Heine, G. Scheuermann
{"title":"Manual Clustering Refinement using Interaction with Blobs","authors":"Christian Heine, G. Scheuermann","doi":"10.2312/VisSym/EuroVis07/059-066","DOIUrl":null,"url":null,"abstract":"The huge amount of different automatic clustering methods emphasizes one thing: there is no optimal clustering method for all possible cases. In certain application domains, like genomics and natural language processing, it is not even clear if any of the already known clustering methods suffice. In such cases, an automatic clustering method is often followed by manual refinement. The refined version may then be used as either an illustration, a reference, or even an input for a rule based or other machine learning algorithm as a new clustering method. In this paper, we describe a novel interaction technique to manual cluster refinement using the metaphor of soap bubbles, represented by special implicit surfaces (blobs). For instance, entities can simply be moved inside and outside of these blobs. A modified force-directed layout process automatically arranges entities equidistant on the screen. The modifications include a reduction to the expected amount of computation per iteration down to O(|V| log |V|+|E|) in order to achieve a high response time for use in an interactive system. We also spend a considerable amount of effort making the display of blobs fast enough for an interactive system.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VisSym/EuroVis07/059-066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The huge amount of different automatic clustering methods emphasizes one thing: there is no optimal clustering method for all possible cases. In certain application domains, like genomics and natural language processing, it is not even clear if any of the already known clustering methods suffice. In such cases, an automatic clustering method is often followed by manual refinement. The refined version may then be used as either an illustration, a reference, or even an input for a rule based or other machine learning algorithm as a new clustering method. In this paper, we describe a novel interaction technique to manual cluster refinement using the metaphor of soap bubbles, represented by special implicit surfaces (blobs). For instance, entities can simply be moved inside and outside of these blobs. A modified force-directed layout process automatically arranges entities equidistant on the screen. The modifications include a reduction to the expected amount of computation per iteration down to O(|V| log |V|+|E|) in order to achieve a high response time for use in an interactive system. We also spend a considerable amount of effort making the display of blobs fast enough for an interactive system.
使用与blob交互的手动聚类优化
大量不同的自动聚类方法强调了一件事:对于所有可能的情况,没有最优的聚类方法。在某些应用领域,如基因组学和自然语言处理,甚至不清楚已知的聚类方法是否足够。在这种情况下,自动聚类方法之后通常是手动细化。然后,精炼的版本可以用作插图、参考,甚至可以作为基于规则或其他机器学习算法的输入,作为新的聚类方法。在本文中,我们描述了一种新的交互技术,以肥皂泡为隐喻,用特殊的隐式表面(blobs)来表示人工聚类精化。例如,实体可以简单地移动到这些blob的内部和外部。修改后的力导向布局过程自动在屏幕上等距排列实体。这些修改包括将每次迭代的预期计算量减少到0 (|V| log |V|+|E|),以便在交互式系统中实现高响应时间。我们还花费了相当多的精力,使blob的显示速度足以满足交互式系统的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信