B. Goossens, J. Aelterman, H. Luong, A. Pižurica, W. Philips
{"title":"Efficient design of a low redundant Discrete Shearlet Transform","authors":"B. Goossens, J. Aelterman, H. Luong, A. Pižurica, W. Philips","doi":"10.1109/LNLA.2009.5278394","DOIUrl":null,"url":null,"abstract":"Recently, there has been a huge interest in multiresolution representations that also perform a multidirectional analysis. The Shearlet transform provides both a multiresolution analysis (such as the wavelet transform), and at the same time an optimally sparse image-independent representation for images containing edges. Existing discrete implementations of the Shearlet transform havemainly focused on specific applications, such as edge detection or denoising, and were not designed with a low redundancy in mind (the redundancy factor is typically larger than the number of orientation subbands in the finest scale). In this paper, we present a novel design of a Discrete Shearlet Transform, that can have a redundancy factor of 2.6, independent of the number of orientation subbands, and that has many interesting properties, such as shift-invariance and self-invertability. This transform can be used in a wide range of applications. Experiments are provided to show the improved characteristics of the transform.","PeriodicalId":231766,"journal":{"name":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LNLA.2009.5278394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Recently, there has been a huge interest in multiresolution representations that also perform a multidirectional analysis. The Shearlet transform provides both a multiresolution analysis (such as the wavelet transform), and at the same time an optimally sparse image-independent representation for images containing edges. Existing discrete implementations of the Shearlet transform havemainly focused on specific applications, such as edge detection or denoising, and were not designed with a low redundancy in mind (the redundancy factor is typically larger than the number of orientation subbands in the finest scale). In this paper, we present a novel design of a Discrete Shearlet Transform, that can have a redundancy factor of 2.6, independent of the number of orientation subbands, and that has many interesting properties, such as shift-invariance and self-invertability. This transform can be used in a wide range of applications. Experiments are provided to show the improved characteristics of the transform.