Portfolio Selection: A Statistical Learning Approach

Yiming Peng, V. Linetsky
{"title":"Portfolio Selection: A Statistical Learning Approach","authors":"Yiming Peng, V. Linetsky","doi":"10.1145/3533271.3561707","DOIUrl":null,"url":null,"abstract":"We propose a new portfolio optimization framework, partially egalitarian portfolio selection (PEPS). Inspired by the celebrated LASSO regression, we regularize the mean-variance portfolio optimization by adding two regularizing terms that essentially zero out portfolio weights of some of the assets in the portfolio and select and shrink the portfolio weights of the remaining assets towards the equal weights to hedge against parameter estimation risk. We solve our PEPS formulations by applying recent advances in mixed integer optimization that allow us to tackle large-scale portfolio problems. We also build a predictive regression model for expected return using two cross-sectional factors, the short-term reversal factor and the medium-term momentum factor, that are shown to be the more significant predictive factors among the hundreds of factors tested in the empirical finance literature. We then incorporate our predictive regression into PEPS by replacing the historical mean. We test our PEPS formulations against an array of classical portfolio optimization strategies on a number of datasets in the US equity markets. The PEPS portfolios enhanced with the predictive regression estimates of the expected stock returns exhibit the highest out-of-sample Sharpe ratios in all instances.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new portfolio optimization framework, partially egalitarian portfolio selection (PEPS). Inspired by the celebrated LASSO regression, we regularize the mean-variance portfolio optimization by adding two regularizing terms that essentially zero out portfolio weights of some of the assets in the portfolio and select and shrink the portfolio weights of the remaining assets towards the equal weights to hedge against parameter estimation risk. We solve our PEPS formulations by applying recent advances in mixed integer optimization that allow us to tackle large-scale portfolio problems. We also build a predictive regression model for expected return using two cross-sectional factors, the short-term reversal factor and the medium-term momentum factor, that are shown to be the more significant predictive factors among the hundreds of factors tested in the empirical finance literature. We then incorporate our predictive regression into PEPS by replacing the historical mean. We test our PEPS formulations against an array of classical portfolio optimization strategies on a number of datasets in the US equity markets. The PEPS portfolios enhanced with the predictive regression estimates of the expected stock returns exhibit the highest out-of-sample Sharpe ratios in all instances.
投资组合选择:一种统计学习方法
本文提出了一个新的投资组合优化框架——部分平均主义投资组合选择(PEPS)。受著名的LASSO回归的启发,我们通过添加两个正则化项来正则化均值-方差投资组合优化,这两个正则化项本质上是将投资组合中某些资产的投资组合权重归零,并选择并缩小剩余资产的投资组合权重,使其趋于相等的权重,以对冲参数估计风险。我们通过应用混合整数优化的最新进展来解决我们的pep公式,这使我们能够解决大规模的投资组合问题。我们还利用两个横截面因素——短期反转因素和中期动量因素——构建了预期收益的预测回归模型,这两个横截面因素在实证金融文献中检验的数百个因素中被证明是更显著的预测因素。然后,我们通过替换历史均值将我们的预测回归纳入PEPS。我们在美国股票市场的许多数据集上测试了我们的pep公式,以对抗一系列经典的投资组合优化策略。在所有情况下,经预期股票收益预测回归估计增强的PEPS投资组合表现出最高的样本外夏普比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信