A criterion for identifying dominant singular values in the SVD based method of harmonic retrieval

S. Rao, D. Gnanaprakasam
{"title":"A criterion for identifying dominant singular values in the SVD based method of harmonic retrieval","authors":"S. Rao, D. Gnanaprakasam","doi":"10.1109/ICASSP.1988.197141","DOIUrl":null,"url":null,"abstract":"The problem of determining the dominant singular values in the singular value decomposition (SVD) based state-space approach to harmonic retrieval is considered. A common difficulty encountered in harmonic retrieval methods is that the covariance matrix is full rank due to noise and estimation errors, instead of the ideal low rank. Then, from the singular value decomposition of this noisy and estimated covariance matrix, a low rank approximation is normally sought by retaining the dominant singular values and zeroing out the rest. A criterion is proposed, based on the distribution of the norms of the perturbation matrix associated with the estimated covariance matrix, to identify these dominant singular values.<<ETX>>","PeriodicalId":448544,"journal":{"name":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1988.197141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The problem of determining the dominant singular values in the singular value decomposition (SVD) based state-space approach to harmonic retrieval is considered. A common difficulty encountered in harmonic retrieval methods is that the covariance matrix is full rank due to noise and estimation errors, instead of the ideal low rank. Then, from the singular value decomposition of this noisy and estimated covariance matrix, a low rank approximation is normally sought by retaining the dominant singular values and zeroing out the rest. A criterion is proposed, based on the distribution of the norms of the perturbation matrix associated with the estimated covariance matrix, to identify these dominant singular values.<>
基于奇异值分解的谐波恢复方法中优势奇异值识别准则
研究了基于奇异值分解(SVD)的状态空间谐波恢复方法中优势奇异值的确定问题。谐波检索方法中常见的一个困难是协方差矩阵由于噪声和估计误差的影响是满秩的,而不是理想的低秩。然后,从这个噪声和估计的协方差矩阵的奇异值分解中,通常通过保留占主导地位的奇异值并将其余的归零来寻求低秩近似。根据与估计的协方差矩阵相关联的扰动矩阵的范数分布,提出了一个准则来识别这些优势奇异值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信