Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require Logarithmic Conjunction-depth

A. Lingas
{"title":"Small Normalized Boolean Circuits for Semi-disjoint Bilinear Forms Require Logarithmic Conjunction-depth","authors":"A. Lingas","doi":"10.4230/LIPIcs.CCC.2018.26","DOIUrl":null,"url":null,"abstract":"We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of and-gates on a directed path to an output gate). In particular, we show that any normalized Boolean circuit of at most ϵlogn conjunction-depth computing the n-dimensional Boolean vector convolution has ω(n2−4ϵ) and-gates. Analogously, any normalized Boolean circuit of at most ϵlogn conjunction-depth computing the n × n Boolean matrix product has ω(n3−4ϵ) and-gates. We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by the known fast algebraic algorithms.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2018.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider normalized Boolean circuits that use binary operations of disjunction and conjunction, and unary negation, with the restriction that negation can be only applied to input variables. We derive a lower bound trade-off between the size of normalized Boolean circuits computing Boolean semi-disjoint bilinear forms and their conjunction-depth (i.e., the maximum number of and-gates on a directed path to an output gate). In particular, we show that any normalized Boolean circuit of at most ϵlogn conjunction-depth computing the n-dimensional Boolean vector convolution has ω(n2−4ϵ) and-gates. Analogously, any normalized Boolean circuit of at most ϵlogn conjunction-depth computing the n × n Boolean matrix product has ω(n3−4ϵ) and-gates. We complete our lower-bound trade-offs with upper-bound trade-offs of similar form yielded by the known fast algebraic algorithms.
半不相交双线性形式的小归一化布尔电路要求对数连接深度
我们考虑归一化布尔电路,它使用二元析取和合取运算,以及一元否定,其限制是否定只能应用于输入变量。我们推导了计算布尔半不相交双线性形式的归一化布尔电路的大小与其连接深度(即,通往输出门的有向路径上的最大与门数)之间的下界权衡。特别地,我们证明了任何归一化布尔电路(最多ϵlogn)计算n维布尔向量卷积的连接深度都有ω(n2−4λ)和门。类似地,任何归一化布尔电路最多ϵlogn连接深度计算n × n布尔矩阵乘积具有ω(n3−4λ)和门。我们用已知的快速代数算法产生的类似形式的上界权衡来完成下界权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信