Mohammed G. Khatib, B. V. D. Zwaag, P. Hartel, G. Smit
{"title":"Interposing Flash between Disk and DRAM to Save Energy for Streaming Workloads","authors":"Mohammed G. Khatib, B. V. D. Zwaag, P. Hartel, G. Smit","doi":"10.1109/ESTMED.2007.4375793","DOIUrl":null,"url":null,"abstract":"In computer systems, the storage hierarchy, composed of a disk drive and a DRAM, is responsible for a large portion of the total energy consumed. This work studies the energy merit of interposing flash memory as a streaming buffer between the disk drive and the DRAM. Doing so, we extend the spin-off period of the disk drive and cut down on the DRAM capacity at the cost of (extra) flash. We study two different streaming applications: mobile multimedia players and media servers. Our simulated results show that for light workloads, a system with a flash as a buffer between the disk and the DRAM consumes up to 40% less energy than the same system without a flash buffer. For heavy workloads savings of at least 30% are possible. We also address the wear- out of flash and present a simple solution to extend its lifetime.","PeriodicalId":428196,"journal":{"name":"2007 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTMED.2007.4375793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In computer systems, the storage hierarchy, composed of a disk drive and a DRAM, is responsible for a large portion of the total energy consumed. This work studies the energy merit of interposing flash memory as a streaming buffer between the disk drive and the DRAM. Doing so, we extend the spin-off period of the disk drive and cut down on the DRAM capacity at the cost of (extra) flash. We study two different streaming applications: mobile multimedia players and media servers. Our simulated results show that for light workloads, a system with a flash as a buffer between the disk and the DRAM consumes up to 40% less energy than the same system without a flash buffer. For heavy workloads savings of at least 30% are possible. We also address the wear- out of flash and present a simple solution to extend its lifetime.