Topic Modelling in Knowledge Management Documents BPS Statistics Indonesia

Muhammad Yunus Hendrawan, Nucke Widowati Kusumo Projo
{"title":"Topic Modelling in Knowledge Management Documents BPS Statistics Indonesia","authors":"Muhammad Yunus Hendrawan, Nucke Widowati Kusumo Projo","doi":"10.34123/icdsos.v2021i1.52","DOIUrl":null,"url":null,"abstract":"Knowledge management is an important activity in improving the performance an organization. BPS Statistics Indonesia has recently implemented such a system to improve the quality and efficiency of business processes. The purposes of this research are: 1) implementing topic modelling on BPS Knowledge Management System to identify groups of document topics; 2) providing recommendations on which the best topic modelling; 3) building a web service function of topic modelling for BPS that includes data preprocessing function and topic group recommendation function. This study applies the Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) topic modelling methods to determine the best grouping techniques for knowledge management systems in BPS Statistics Indonesia. The results show that the LDA model using Mallet is the best model with 25 topic groups and a coherence score of 0.4803. The performance result suggest that the best modelling method is the LDA. The LDA model is then successfully implemented in RESTful web service to provide services in the preprocessing function and topic recommendations on documents entered into the Knowledge Management System BPS.","PeriodicalId":151043,"journal":{"name":"Proceedings of The International Conference on Data Science and Official Statistics","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The International Conference on Data Science and Official Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34123/icdsos.v2021i1.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge management is an important activity in improving the performance an organization. BPS Statistics Indonesia has recently implemented such a system to improve the quality and efficiency of business processes. The purposes of this research are: 1) implementing topic modelling on BPS Knowledge Management System to identify groups of document topics; 2) providing recommendations on which the best topic modelling; 3) building a web service function of topic modelling for BPS that includes data preprocessing function and topic group recommendation function. This study applies the Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) topic modelling methods to determine the best grouping techniques for knowledge management systems in BPS Statistics Indonesia. The results show that the LDA model using Mallet is the best model with 25 topic groups and a coherence score of 0.4803. The performance result suggest that the best modelling method is the LDA. The LDA model is then successfully implemented in RESTful web service to provide services in the preprocessing function and topic recommendations on documents entered into the Knowledge Management System BPS.
知识管理文档中的主题建模BPS统计印度尼西亚
知识管理是提高组织绩效的一项重要活动。BPS统计印度尼西亚最近实施了这样一个系统,以提高业务流程的质量和效率。本研究的目的是:1)在BPS知识管理系统上实现主题建模,识别文档主题组;2)提供最佳主题建模的建议;3)构建BPS主题建模web服务功能,包括数据预处理功能和主题组推荐功能。本研究应用潜在语义分析(LSA)和潜在狄利克雷分配(LDA)主题建模方法来确定BPS Statistics印度尼西亚知识管理系统的最佳分组技术。结果表明,使用Mallet的LDA模型是25个主题组的最佳模型,一致性得分为0.4803。性能结果表明,最佳的建模方法是LDA。然后将LDA模型成功地实现在RESTful web服务中,为输入知识管理系统BPS的文档提供预处理功能和主题推荐服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信