Transferring digit classifier's features to a traffic sign detector

Hongliang He, Le Hui, Wen-Yi Gu, Shanshan Zhang, Jian Yang
{"title":"Transferring digit classifier's features to a traffic sign detector","authors":"Hongliang He, Le Hui, Wen-Yi Gu, Shanshan Zhang, Jian Yang","doi":"10.1109/PIC.2017.8359591","DOIUrl":null,"url":null,"abstract":"Traffic sign detection system is one of the most important part of self-driving cars. It is hard to correctly detect and classify the traffic signs because of the small scale property and the complexity of road environments. In this work, we propose a novel framework of feature transferring for traffic sign detection. We improve the traffic sign detection performance in the wild by transferring digit classifier's features to a detector. Specifically, we train a convolutional neural network(CNN) classifier on a digit training set, in which each image is cropped from the traffic sign detection dataset, and then use the classifier's high-level features as an additional supervision to the detector. With the help of the additional supervision, the detector can learn a better representation of traffic sign. Extensive experiments validate the effectiveness of our approach. Our method achieves state-of-the-art performance in traffic sign detection task on the largest traffic sign detection dataset, Tsinghua-Tencent 100K.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Traffic sign detection system is one of the most important part of self-driving cars. It is hard to correctly detect and classify the traffic signs because of the small scale property and the complexity of road environments. In this work, we propose a novel framework of feature transferring for traffic sign detection. We improve the traffic sign detection performance in the wild by transferring digit classifier's features to a detector. Specifically, we train a convolutional neural network(CNN) classifier on a digit training set, in which each image is cropped from the traffic sign detection dataset, and then use the classifier's high-level features as an additional supervision to the detector. With the help of the additional supervision, the detector can learn a better representation of traffic sign. Extensive experiments validate the effectiveness of our approach. Our method achieves state-of-the-art performance in traffic sign detection task on the largest traffic sign detection dataset, Tsinghua-Tencent 100K.
将数字分类器的特征转移到交通标志检测器中
交通标志检测系统是自动驾驶汽车的重要组成部分之一。由于交通标志的小尺度特性和道路环境的复杂性,给正确检测和分类带来了困难。在这项工作中,我们提出了一种新的特征转移框架用于交通标志检测。我们通过将数字分类器的特征转移到检测器中来提高交通标志的检测性能。具体来说,我们在数字训练集上训练卷积神经网络(CNN)分类器,其中每个图像都是从交通标志检测数据集中裁剪出来的,然后使用分类器的高级特征作为检测器的额外监督。在附加监督的帮助下,检测器可以更好地学习交通标志的表示。大量的实验验证了我们方法的有效性。我们的方法在最大的交通标志检测数据集清华-腾讯100K上实现了最先进的交通标志检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信