{"title":"On-chip cell manipulation by vibration-induced whirling flow","authors":"T. Hayakawa, S. Sakuma, F. Arai","doi":"10.1109/MHS.2014.7006136","DOIUrl":null,"url":null,"abstract":"We present a cell manipulation method by using vibration induced whirling flow. The local flow is induced just around a micropillar by applying circular vibration to the micropillar. By patterning a micropillar array on a chip and applying circular vibration to the chip, flow for cell transport can be generated along the array. As an application, we demonstrate a single cell extraction using the vibration-induced flow and single cell catcher made by thermo-responsive gel. Target cells are transported to the single cell catcher by vibration induced flow and caught by the single cell catcher. We tried 30 times single cell extraction, succeeded in 100% single cell catch and 60% extraction to external culture well.","PeriodicalId":181514,"journal":{"name":"2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Micro-NanoMechatronics and Human Science (MHS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2014.7006136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a cell manipulation method by using vibration induced whirling flow. The local flow is induced just around a micropillar by applying circular vibration to the micropillar. By patterning a micropillar array on a chip and applying circular vibration to the chip, flow for cell transport can be generated along the array. As an application, we demonstrate a single cell extraction using the vibration-induced flow and single cell catcher made by thermo-responsive gel. Target cells are transported to the single cell catcher by vibration induced flow and caught by the single cell catcher. We tried 30 times single cell extraction, succeeded in 100% single cell catch and 60% extraction to external culture well.