Modelling speaker and channel variability using deep neural networks for robust speaker verification

Gautam Bhattacharya, Md. Jahangir Alam, P. Kenny, Vishwa Gupta
{"title":"Modelling speaker and channel variability using deep neural networks for robust speaker verification","authors":"Gautam Bhattacharya, Md. Jahangir Alam, P. Kenny, Vishwa Gupta","doi":"10.1109/SLT.2016.7846264","DOIUrl":null,"url":null,"abstract":"We propose to improve the performance of i-vector based speaker verification by processing the i-vectors with a deep neural network before they are fed to a cosine distance or probabilistic linear discriminant analysis (PLDA) classifier. To this end we build on an existing model that we refer to as Non-linear Within Class Normalization (NWCN) and introduce a novel Speaker Classifier Network (SCN). Both models deliver impressive speaker verification performance, showing a 56% and 68% relative improvement over standard i-vectors when combined with a cosine distance backend. The NWCN model also reduces the equal error rate for PLDA from 1.78% to 1.63%. We also test these models under the constraints of domain mismatch, i.e. when no in-domain training data is available. Under these conditions, SCN features in combination with cosine distance performs better than the PLDA baseline, achieving an equal error rate of 2.92% as compared to 3.37%.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We propose to improve the performance of i-vector based speaker verification by processing the i-vectors with a deep neural network before they are fed to a cosine distance or probabilistic linear discriminant analysis (PLDA) classifier. To this end we build on an existing model that we refer to as Non-linear Within Class Normalization (NWCN) and introduce a novel Speaker Classifier Network (SCN). Both models deliver impressive speaker verification performance, showing a 56% and 68% relative improvement over standard i-vectors when combined with a cosine distance backend. The NWCN model also reduces the equal error rate for PLDA from 1.78% to 1.63%. We also test these models under the constraints of domain mismatch, i.e. when no in-domain training data is available. Under these conditions, SCN features in combination with cosine distance performs better than the PLDA baseline, achieving an equal error rate of 2.92% as compared to 3.37%.
利用深度神经网络对说话人和通道可变性进行建模,实现对说话人的鲁棒验证
我们提出在i-向量被输入余弦距离或概率线性判别分析(PLDA)分类器之前,通过深度神经网络处理i-向量来提高基于i-向量的说话人验证的性能。为此,我们建立了一个现有的模型,我们称之为非线性类内归一化(NWCN),并引入了一个新的说话人分类器网络(SCN)。这两种模型都提供了令人印象深刻的扬声器验证性能,在与余弦距离后端相结合时,比标准i-vector显示出56%和68%的相对改进。NWCN模型还将PLDA的等错误率从1.78%降低到1.63%。我们还在领域不匹配的约束下对这些模型进行了测试,即在没有可用的领域内训练数据的情况下。在这些条件下,SCN特征与余弦距离的结合优于PLDA基线,错误率为2.92%,错误率为3.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信