Using Machine Learning to find out When to use Box-Cox Transformation on Time Series Data

Amit Thombre
{"title":"Using Machine Learning to find out When to use Box-Cox Transformation on Time Series Data","authors":"Amit Thombre","doi":"10.1109/PUNECON.2018.8745372","DOIUrl":null,"url":null,"abstract":"The Box-Cox transformation improves the normality of the data. This improvement in normality does not guarantee better forecasting results using ARIMA as compared to when the data transformation is not used. So when should one use the transformation on the data to get good forecasting results? The current study tries to answer this by building a predictive model on a set of independent variables which are the characteristics of the data and the dependent variable which tells if use of Box-Cox transformation for forecasting by ARIMA is useful or not. This model gives 64% accuracy and needs improvement. Along with this, another prediction model is obtained which shows from the characteristics of the data whether the 95% prediction intervals obtained by using Box-Cox transformation are better than the intervals obtained by not using the transformation. This model gives 82% accuracy.","PeriodicalId":166677,"journal":{"name":"2018 IEEE Punecon","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Punecon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PUNECON.2018.8745372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Box-Cox transformation improves the normality of the data. This improvement in normality does not guarantee better forecasting results using ARIMA as compared to when the data transformation is not used. So when should one use the transformation on the data to get good forecasting results? The current study tries to answer this by building a predictive model on a set of independent variables which are the characteristics of the data and the dependent variable which tells if use of Box-Cox transformation for forecasting by ARIMA is useful or not. This model gives 64% accuracy and needs improvement. Along with this, another prediction model is obtained which shows from the characteristics of the data whether the 95% prediction intervals obtained by using Box-Cox transformation are better than the intervals obtained by not using the transformation. This model gives 82% accuracy.
使用机器学习找出何时在时间序列数据上使用Box-Cox变换
Box-Cox变换改善了数据的正态性。与不使用数据转换时相比,使用ARIMA对正态性的改进并不能保证更好的预测结果。那么,什么时候应该对数据进行转换以获得良好的预测结果呢?目前的研究试图通过在一组自变量上建立一个预测模型来回答这个问题,这些自变量是数据的特征,而因变量则告诉我们使用Box-Cox变换进行ARIMA预测是否有用。该模型的准确率为64%,有待改进。与此同时,得到另一种预测模型,从数据的特征来看,使用Box-Cox变换得到的95%预测区间是否优于不使用Box-Cox变换得到的区间。该模型的准确率为82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信