First-Order Methods With Extended Stability Regions for Solving Electric Circuit Problems

M. V. Rybkov, L. Knaub, Danil V. Khorov, М В Рыбков, Людмила Володимирівна Кнауб, Данил В. Хоров
{"title":"First-Order Methods With Extended Stability Regions for Solving Electric Circuit Problems","authors":"M. V. Rybkov, L. Knaub, Danil V. Khorov, М В Рыбков, Людмила Володимирівна Кнауб, Данил В. Хоров","doi":"10.17516/1997-1397-2020-13-2-242-252","DOIUrl":null,"url":null,"abstract":"Abstract. Stability control of Runge-Kutta numerical schemes is studied to increase efficiency of integrating stiff problems. The implementation of the algorithm to determine coefficients of stability polynomials with the use of the GMP library is presented. Shape and size of the stability region of a method can be preassigned using proposed algorithm. Sets of first-order methods with extended stability domains are built. The results of electrical circuits simulation show the increase of the efficiency of the constructed first-order methods in comparison with methods of higher order.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-2-242-252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Stability control of Runge-Kutta numerical schemes is studied to increase efficiency of integrating stiff problems. The implementation of the algorithm to determine coefficients of stability polynomials with the use of the GMP library is presented. Shape and size of the stability region of a method can be preassigned using proposed algorithm. Sets of first-order methods with extended stability domains are built. The results of electrical circuits simulation show the increase of the efficiency of the constructed first-order methods in comparison with methods of higher order.
带扩展稳定区域的一阶方法求解电路问题
摘要为了提高求解刚性问题的效率,研究了龙格-库塔数值格式的稳定性控制。给出了利用GMP库确定稳定性多项式系数的算法实现。利用该算法可以对方法的稳定区域的形状和大小进行预分配。建立了具有扩展稳定域的一阶方法集。电路仿真结果表明,与高阶方法相比,所构建的一阶方法的效率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信