Temporal Modeling of Deterioration Patterns and Clustering for Disease Prediction of ALS Patients

Dan Halbersberg, B. Lerner
{"title":"Temporal Modeling of Deterioration Patterns and Clustering for Disease Prediction of ALS Patients","authors":"Dan Halbersberg, B. Lerner","doi":"10.1109/ICMLA.2019.00019","DOIUrl":null,"url":null,"abstract":"Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, lasting from the day of onset until death. Factors such as the progression rate and pattern of the disease vary greatly among patients, making it difficult to achieve accurate predictions about ALS. To accurately predict ALS disease state and deterioration, we propose a novel approach that combines: a) sequence clustering based on dynamic time warping for separation among patients with diverse ALS deterioration patterns, b) sequential pattern mining for discovery of deterioration changes that patients of the same type may have in common, and c) deterioration-based patient next-state prediction. Using a clinical dataset, we demonstrate the advantage of the proposed approach in terms of classification accuracy and deterioration detection compared to other classification methods and temporal models such as long short-term memory.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, lasting from the day of onset until death. Factors such as the progression rate and pattern of the disease vary greatly among patients, making it difficult to achieve accurate predictions about ALS. To accurately predict ALS disease state and deterioration, we propose a novel approach that combines: a) sequence clustering based on dynamic time warping for separation among patients with diverse ALS deterioration patterns, b) sequential pattern mining for discovery of deterioration changes that patients of the same type may have in common, and c) deterioration-based patient next-state prediction. Using a clinical dataset, we demonstrate the advantage of the proposed approach in terms of classification accuracy and deterioration detection compared to other classification methods and temporal models such as long short-term memory.
ALS患者疾病预测恶化模式的时间模型和聚类
肌萎缩性侧索硬化症(ALS)是一种神经退行性疾病,从发病之日起一直持续到死亡。诸如疾病进展率和模式等因素在患者之间差异很大,因此很难实现对ALS的准确预测。为了准确预测ALS疾病状态和恶化,我们提出了一种新的方法,该方法结合了:a)基于动态时间扭曲的序列聚类,用于分离不同ALS恶化模式的患者;b)序列模式挖掘,用于发现相同类型患者可能具有的恶化变化;c)基于恶化的患者下一状态预测。使用临床数据集,我们证明了与其他分类方法和时间模型(如长短期记忆)相比,所提出的方法在分类准确性和退化检测方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信