{"title":"High-Speed Adaptive Turbo Decoding Algorithm and Its Implementation","authors":"M. Kim, J. Jeong, Ji-Won Jung","doi":"10.1109/ITW2.2006.323766","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive turbo decoding algorithm for high order modulation scheme combined with originally design for a standard rate-1/2 turbo decoder for B/QPSK modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. .The source of the latency and power consumption reduction is from the combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implemented the proposed scheme on a field-programmable gate array (FPGA) and compared its decoding speed with that of a conventional decoder","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose an adaptive turbo decoding algorithm for high order modulation scheme combined with originally design for a standard rate-1/2 turbo decoder for B/QPSK modulation. A transformation applied to the incoming I-channel and Q-channel symbols allows the use of an off-the-shelf B/QPSK turbo decoder without any modifications. .The source of the latency and power consumption reduction is from the combination of the radix-4, dual-path processing, parallel decoding, and early-stop algorithms. We implemented the proposed scheme on a field-programmable gate array (FPGA) and compared its decoding speed with that of a conventional decoder