Electrocardiogram (ECG) heart disease diagnosis using PNN, SVM and Softmax regression classifiers

Hadeer El-Saadawy, M. Tantawi, Howida A. Shedeed, M. Tolba
{"title":"Electrocardiogram (ECG) heart disease diagnosis using PNN, SVM and Softmax regression classifiers","authors":"Hadeer El-Saadawy, M. Tantawi, Howida A. Shedeed, M. Tolba","doi":"10.1109/INTELCIS.2017.8260040","DOIUrl":null,"url":null,"abstract":"In this paper, an automatic method is proposed to classify heart beats into 15 classes mapped to five main categories. Dynamic segmentation strategy is utilized to keep into consideration the heart rate variation. Discrete Wavelet Transform (DWT) is then applied on the segmented heart beats to extract the features for the description of each segment. The features extracted are then subjected to principle component analysis (PCA) to remove the irrelevant features due to its high dimension. Thereafter, Support Vector Machine (SVM), Softmax regression and Probabilistic Neural Network (PNN) algorithms are applied to the reduced features. Finally, MIT-BIH dataset is utilized as an evaluation dataset with tenfold cross validation strategy to achieve 97.1%, 98.3% and 93.3% overall accuracy and 88.7%, 83.3% and 42.0% average accuracy using SVM, PNN and Softmax regression respectively.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, an automatic method is proposed to classify heart beats into 15 classes mapped to five main categories. Dynamic segmentation strategy is utilized to keep into consideration the heart rate variation. Discrete Wavelet Transform (DWT) is then applied on the segmented heart beats to extract the features for the description of each segment. The features extracted are then subjected to principle component analysis (PCA) to remove the irrelevant features due to its high dimension. Thereafter, Support Vector Machine (SVM), Softmax regression and Probabilistic Neural Network (PNN) algorithms are applied to the reduced features. Finally, MIT-BIH dataset is utilized as an evaluation dataset with tenfold cross validation strategy to achieve 97.1%, 98.3% and 93.3% overall accuracy and 88.7%, 83.3% and 42.0% average accuracy using SVM, PNN and Softmax regression respectively.
基于PNN、SVM和Softmax回归分类器的心电图心脏病诊断
本文提出了一种将心跳自动划分为15类的方法。采用动态分割策略,兼顾心率变化。然后将离散小波变换(DWT)应用于分割的心跳,提取用于描述每个片段的特征。然后对提取的特征进行主成分分析(PCA),去除由于其高维数而不相关的特征。然后,将支持向量机(SVM)、Softmax回归和概率神经网络(PNN)算法应用于约简特征。最后,利用MIT-BIH数据集作为评估数据集,采用十倍交叉验证策略,使用SVM、PNN和Softmax回归,总体准确率分别达到97.1%、98.3%和93.3%,平均准确率分别达到88.7%、83.3%和42.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信