{"title":"On Filter Size in Graph Convolutional Networks","authors":"D. V. Tran, Nicoló Navarin, A. Sperduti","doi":"10.1109/SSCI.2018.8628758","DOIUrl":null,"url":null,"abstract":"Recently, many researchers have been focusing on the definition of neural networks for graphs. The basic component for many of these approaches remains the graph convolution idea proposed almost a decade ago. In this paper, we extend this basic component, following an intuition derived from the well-known convolutional filters over multi-dimensional tensors. In particular, we derive a simple, efficient and effective way to introduce a hyper-parameter on graph convolutions that influences the filter size, i.e., its receptive field over the considered graph. We show with experimental results on real-world graph datasets that the proposed graph convolutional filter improves the predictive performance of Deep Graph Convolutional Networks.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Recently, many researchers have been focusing on the definition of neural networks for graphs. The basic component for many of these approaches remains the graph convolution idea proposed almost a decade ago. In this paper, we extend this basic component, following an intuition derived from the well-known convolutional filters over multi-dimensional tensors. In particular, we derive a simple, efficient and effective way to introduce a hyper-parameter on graph convolutions that influences the filter size, i.e., its receptive field over the considered graph. We show with experimental results on real-world graph datasets that the proposed graph convolutional filter improves the predictive performance of Deep Graph Convolutional Networks.