A spline-based computational technique applicable for solution of boundary value problem arising in human physiology

P. Srivastava
{"title":"A spline-based computational technique applicable for solution of boundary value problem arising in human physiology","authors":"P. Srivastava","doi":"10.1504/IJCSM.2019.097635","DOIUrl":null,"url":null,"abstract":"Non-polynomial quintic spline functions based algorithms are used for computing an approximation to the nonlinear two point second order singular boundary value problems arising in human physiology. After removing the singularity by L' hospital rule, the resulting boundary value problem is then efficiently treated by employing non-polynomial quintic spline for finding the numerical solution. Two examples have been included and comparison of the numerical results made with cubic extended B-spline method and finite difference method.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2019.097635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Non-polynomial quintic spline functions based algorithms are used for computing an approximation to the nonlinear two point second order singular boundary value problems arising in human physiology. After removing the singularity by L' hospital rule, the resulting boundary value problem is then efficiently treated by employing non-polynomial quintic spline for finding the numerical solution. Two examples have been included and comparison of the numerical results made with cubic extended B-spline method and finite difference method.
一种基于样条的计算方法,适用于人体生理学边值问题的求解
采用基于非多项式五次样条函数的算法对人体生理学中出现的非线性两点二阶奇异边值问题进行了近似计算。利用洛必达法则去除奇异点后,采用非多项式五次样条法求数值解,有效地处理了所得边值问题。文中给出了两个算例,并对三次扩展b样条法和有限差分法的数值结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信