Multi-IVE: Privacy Enhancement of Multiple Soft-Biometrics in Face Embeddings

Pietro Melzi, H. O. Shahreza, C. Rathgeb, Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, S. Marcel, C. Busch
{"title":"Multi-IVE: Privacy Enhancement of Multiple Soft-Biometrics in Face Embeddings","authors":"Pietro Melzi, H. O. Shahreza, C. Rathgeb, Rubén Tolosana, R. Vera-Rodríguez, Julian Fierrez, S. Marcel, C. Busch","doi":"10.1109/WACVW58289.2023.00036","DOIUrl":null,"url":null,"abstract":"This study focuses on the protection of soft-biometric at-tributes related to the demographic information of individ-uals that can be extracted from compact representations of face images, called embeddings. We consider a state-of-the-art technology for soft-biometric privacy enhancement, Incremental Variable Elimination (IVE), and propose Multi-IVE, a new method based on IVE to secure multiple soft-biometric attributes simultaneously. Several aspects of this technology are investigated, proposing different approaches to effectively identify and discard multiple soft-biometric at-tributes contained in face embeddings. In particular, we consider a domain transformation using Principle component Analysis (PCA), and apply IVE in the PCA domain. A complete analysis of the proposed Multi-IVE algorithm is carried out studying the embeddings generated by state-of-the-art face feature extractors, predicting soft-biometric attributes contained within them with multiple machine learning classifiers, and providing a cross-database evaluation. The results obtained show the possibility to simultane-ously secure multiple soft-biometric attributes and support the application of embedding domain transformations be-fore addressing the enhancement of soft-biometric privacy.","PeriodicalId":306545,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW58289.2023.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study focuses on the protection of soft-biometric at-tributes related to the demographic information of individ-uals that can be extracted from compact representations of face images, called embeddings. We consider a state-of-the-art technology for soft-biometric privacy enhancement, Incremental Variable Elimination (IVE), and propose Multi-IVE, a new method based on IVE to secure multiple soft-biometric attributes simultaneously. Several aspects of this technology are investigated, proposing different approaches to effectively identify and discard multiple soft-biometric at-tributes contained in face embeddings. In particular, we consider a domain transformation using Principle component Analysis (PCA), and apply IVE in the PCA domain. A complete analysis of the proposed Multi-IVE algorithm is carried out studying the embeddings generated by state-of-the-art face feature extractors, predicting soft-biometric attributes contained within them with multiple machine learning classifiers, and providing a cross-database evaluation. The results obtained show the possibility to simultane-ously secure multiple soft-biometric attributes and support the application of embedding domain transformations be-fore addressing the enhancement of soft-biometric privacy.
Multi-IVE:人脸嵌入中多重软生物特征的隐私增强
本研究的重点是保护与个人人口统计信息相关的软生物特征属性,这些属性可以从面部图像的紧凑表示(称为嵌入)中提取。我们考虑了一种最先进的软生物特征隐私增强技术——增量变量消除(IVE),并提出了一种基于IVE的同时保护多个软生物特征属性的新方法Multi-IVE。研究了该技术的几个方面,提出了有效识别和丢弃人脸嵌入中包含的多个软生物特征属性的不同方法。特别地,我们考虑了一个使用主成分分析(PCA)的域变换,并将IVE应用于PCA域。对所提出的Multi-IVE算法进行了完整的分析,研究了由最先进的人脸特征提取器生成的嵌入,使用多个机器学习分类器预测其中包含的软生物特征属性,并提供了跨数据库评估。结果表明,在解决增强软生物特征隐私之前,可以同时保护多个软生物特征属性,并支持嵌入域变换的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信