Unsupervised segmentation of cell nuclei using geometric models

Shaun Fitch, Trevor Jackson, Péter András, C. Robson
{"title":"Unsupervised segmentation of cell nuclei using geometric models","authors":"Shaun Fitch, Trevor Jackson, Péter András, C. Robson","doi":"10.1109/ISBI.2008.4541099","DOIUrl":null,"url":null,"abstract":"Fluorescent microscopy of biological samples allows non-invasive screening of specific molecular events in-situ. This approach is useful for investigating intricate signalling pathways and in the drug discovery process. The large volumes of data involved in image analysis are a limiting factor. As manual image interpretation relies on expensive manpower automated analysis is a far more appropriate solution. In this paper we discuss our approach to achieve reliable automated segmentation of individual cell nuclei from wide field images taken of prostate cancer cells. We present a novel analysis routine to accurately identify cell nuclei based upon intensity clustering and morphological validation using a data derived geometric model. This approach is shown to consistently outperform the standard analysis technique using real data.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescent microscopy of biological samples allows non-invasive screening of specific molecular events in-situ. This approach is useful for investigating intricate signalling pathways and in the drug discovery process. The large volumes of data involved in image analysis are a limiting factor. As manual image interpretation relies on expensive manpower automated analysis is a far more appropriate solution. In this paper we discuss our approach to achieve reliable automated segmentation of individual cell nuclei from wide field images taken of prostate cancer cells. We present a novel analysis routine to accurately identify cell nuclei based upon intensity clustering and morphological validation using a data derived geometric model. This approach is shown to consistently outperform the standard analysis technique using real data.
利用几何模型对细胞核进行无监督分割
生物样品的荧光显微镜允许非侵入性筛选特定的分子事件在现场。这种方法对于研究复杂的信号通路和药物发现过程是有用的。图像分析中涉及的大量数据是一个限制因素。由于人工图像判读依赖于昂贵的人力,自动分析是一个更合适的解决方案。在本文中,我们讨论了我们的方法,以实现可靠的自动分割单个细胞核从摄于前列腺癌细胞的宽视场图像。我们提出了一种新的分析程序,以准确地识别基于强度聚类和形态学验证的细胞核使用数据衍生的几何模型。事实证明,使用实际数据,这种方法的性能始终优于标准分析技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信