Hybrid Graph Convolutional Networks for Semi-Supervised Classification

Dongyang Bao, Wei Zheng, Wen-zhong Hu
{"title":"Hybrid Graph Convolutional Networks for Semi-Supervised Classification","authors":"Dongyang Bao, Wei Zheng, Wen-zhong Hu","doi":"10.18178/wcse.2019.06.016","DOIUrl":null,"url":null,"abstract":"In recent years, Graph Convolutional Network (GCN) have been successfully applied to many graph classification problems. It has the capability to learn many types data that Convolutional Neural Networks (CNN) cannot handle, such as irregular data. However, we found that GCN can not completely capture the graph structure information and especially for inference on data efficiently. In this paper, we analyze the advantages and disadvantages of several models and propose two different methods of combining models. Based on that, we propose a new model by using ensemble learning Based on GCN. This model has the ability to capture the advantages of multiple models. Finally, we conduct our experiment on several datasets, and the experimental results show that our approach is effective.","PeriodicalId":342228,"journal":{"name":"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2019 the 9th International Workshop on Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/wcse.2019.06.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, Graph Convolutional Network (GCN) have been successfully applied to many graph classification problems. It has the capability to learn many types data that Convolutional Neural Networks (CNN) cannot handle, such as irregular data. However, we found that GCN can not completely capture the graph structure information and especially for inference on data efficiently. In this paper, we analyze the advantages and disadvantages of several models and propose two different methods of combining models. Based on that, we propose a new model by using ensemble learning Based on GCN. This model has the ability to capture the advantages of multiple models. Finally, we conduct our experiment on several datasets, and the experimental results show that our approach is effective.
半监督分类的混合图卷积网络
近年来,图卷积网络(GCN)已成功地应用于许多图分类问题。它具有学习卷积神经网络(CNN)无法处理的许多类型数据的能力,例如不规则数据。然而,我们发现GCN不能完全捕获图的结构信息,特别是不能有效地进行数据推理。本文分析了几种模型的优缺点,提出了两种不同的模型组合方法。在此基础上,提出了一种基于GCN的集成学习模型。该模型能够捕捉多个模型的优点。最后,我们在多个数据集上进行了实验,实验结果表明我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信