Detection of some heart diseases using fractal dimension and chaos theory

Ibticeme Sedielmaci, F. Bereksi Reguig
{"title":"Detection of some heart diseases using fractal dimension and chaos theory","authors":"Ibticeme Sedielmaci, F. Bereksi Reguig","doi":"10.1109/WOSSPA.2013.6602342","DOIUrl":null,"url":null,"abstract":"This study evaluates the changes in heart rate variability for 13 signals ECG signals taken from the MIT-BIH arrhythmia database to detect some major heart disease (APC, PVC, RBB, LBB) with fractal dimension. Fractal dimension is one of the best known parts of fractal analysis. A huge number of dimensions have been defined in various fields. We choose the regularization dimension [1] for detection and prediction of some hearts failure. Nonlinear analysis based on chaos theory and fractal analysis techniques may quantify abnormalities. This article emphasizes changes in time series applied on patients with heart disease.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This study evaluates the changes in heart rate variability for 13 signals ECG signals taken from the MIT-BIH arrhythmia database to detect some major heart disease (APC, PVC, RBB, LBB) with fractal dimension. Fractal dimension is one of the best known parts of fractal analysis. A huge number of dimensions have been defined in various fields. We choose the regularization dimension [1] for detection and prediction of some hearts failure. Nonlinear analysis based on chaos theory and fractal analysis techniques may quantify abnormalities. This article emphasizes changes in time series applied on patients with heart disease.
用分形维数和混沌理论检测心脏疾病
本研究用分形维数评价了来自MIT-BIH心律失常数据库的13种心电信号的心率变异性变化,以检测一些主要心脏病(APC、PVC、RBB、LBB)。分形维数是分形分析中最著名的部分之一。在不同的领域中已经定义了大量的维度。我们选择正则化维数[1]来检测和预测一些心力衰竭。基于混沌理论和分形分析技术的非线性分析可以量化异常。本文强调时间序列的变化在心脏病患者中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信