Semantic compression of episodic memories

D. G. Nagy, B. Török, Gergő Orbán
{"title":"Semantic compression of episodic memories","authors":"D. G. Nagy, B. Török, Gergő Orbán","doi":"10.32470/ccn.2018.1050-0","DOIUrl":null,"url":null,"abstract":"Storing knowledge of an agent's environment in the form of a probabilistic generative model has been established as a crucial ingredient in a multitude of cognitive tasks. Perception has been formalised as probabilistic inference over the state of latent variables, whereas in decision making the model of the environment is used to predict likely consequences of actions. Such generative models have earlier been proposed to underlie semantic memory but it remained unclear if this model also underlies the efficient storage of experiences in episodic memory. We formalise the compression of episodes in the normative framework of information theory and argue that semantic memory provides the distortion function for compression of experiences. Recent advances and insights from machine learning allow us to approximate semantic compression in naturalistic domains and contrast the resulting deviations in compressed episodes with memory errors observed in the experimental literature on human memory.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2018.1050-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Storing knowledge of an agent's environment in the form of a probabilistic generative model has been established as a crucial ingredient in a multitude of cognitive tasks. Perception has been formalised as probabilistic inference over the state of latent variables, whereas in decision making the model of the environment is used to predict likely consequences of actions. Such generative models have earlier been proposed to underlie semantic memory but it remained unclear if this model also underlies the efficient storage of experiences in episodic memory. We formalise the compression of episodes in the normative framework of information theory and argue that semantic memory provides the distortion function for compression of experiences. Recent advances and insights from machine learning allow us to approximate semantic compression in naturalistic domains and contrast the resulting deviations in compressed episodes with memory errors observed in the experimental literature on human memory.
情景记忆的语义压缩
以概率生成模型的形式存储智能体所处环境的知识已成为众多认知任务的关键组成部分。感知已被形式化为对潜在变量状态的概率推断,而在决策中,环境模型用于预测行动的可能后果。这种生成模型早前曾被提出作为语义记忆的基础,但目前尚不清楚这种模型是否也是情景记忆中经验有效存储的基础。我们在信息论的规范框架中形式化情节的压缩,并认为语义记忆为经验压缩提供了扭曲功能。机器学习的最新进展和见解使我们能够在自然领域中近似语义压缩,并将压缩事件的结果偏差与人类记忆实验文献中观察到的记忆错误进行对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信