Prognostics of polygonalization of high-speed railway train wheels using a generalized additive model smoothed by spline-backfitted kernel

Zhexiang Chi, Lijian Yang, Jing Lin, Simin Huang
{"title":"Prognostics of polygonalization of high-speed railway train wheels using a generalized additive model smoothed by spline-backfitted kernel","authors":"Zhexiang Chi, Lijian Yang, Jing Lin, Simin Huang","doi":"10.1109/ICPHM.2019.8819407","DOIUrl":null,"url":null,"abstract":"A method for the prognosis of polygonalization in high-speed railway train wheels is developed based on a generalized additive model. Unlike most previous studies, this study uses field data, so findings can help improve practical maintenance efficiency. A spline-backfitted kernel is used to improve computation efficiency when figuring out model parameters. This prognostics method can be applied to practical railway management decisions.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A method for the prognosis of polygonalization in high-speed railway train wheels is developed based on a generalized additive model. Unlike most previous studies, this study uses field data, so findings can help improve practical maintenance efficiency. A spline-backfitted kernel is used to improve computation efficiency when figuring out model parameters. This prognostics method can be applied to practical railway management decisions.
用样条背拟合核平滑的广义加性模型预测高速铁路列车车轮多面化
提出了一种基于广义加性模型的高速铁路列车车轮多面化预测方法。与以往的大多数研究不同,本研究使用了现场数据,因此研究结果有助于提高实际维护效率。在计算模型参数时,采用样条反拟合核,提高了计算效率。该预测方法可应用于实际的铁路管理决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信