A Cost-Efficient and Continuous Ethernet Cable Diagnosis Technique based on Undersampling

Ahmed Yahia Kallel, Sebastian Uziel, Manuel Schappacher, A. Sikora, T. Keutel, O. Kanoun
{"title":"A Cost-Efficient and Continuous Ethernet Cable Diagnosis Technique based on Undersampling","authors":"Ahmed Yahia Kallel, Sebastian Uziel, Manuel Schappacher, A. Sikora, T. Keutel, O. Kanoun","doi":"10.1109/IDAACS.2019.8924458","DOIUrl":null,"url":null,"abstract":"The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.
基于欠采样的低成本连续以太网电缆诊断技术
对工业环境的监控可确保高度自动化的流程不间断地运行。然而,即使工业机器本身被监控,在今天的安装中,通信线路目前也没有被持续监控。它们通常只在维修间隔或出现错误时进行检查。此外,在测试期间,电缆或连接的机器通常必须从系统中移除。为了克服这些缺点,我们开发并实现了基于以太网的工业总线系统的经济高效且连续的信号监控。已经开发了几种方法来评估电缆的质量。这些方法可分为被动方法和主动方法。如果不希望通信中断,则不适合主动方法。另一方面,被动方法需要过采样,这需要昂贵的硬件。本文提出了一种结合欠采样目标的低成本硬件的新型被动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信