Robust wheelchair pedestrian detection using sparse representation

Po-Jui Huang, Duan-Yu Chen
{"title":"Robust wheelchair pedestrian detection using sparse representation","authors":"Po-Jui Huang, Duan-Yu Chen","doi":"10.1109/VCIP.2012.6410801","DOIUrl":null,"url":null,"abstract":"Detecting pedestrians with disability in surveillance videos is practical for the implementation of automated alert/assistance technology. This paper presents a novel approach for the dimensionality reduction which employs sparse representation to improve the generalization capability of a classifier. To characterize pedestrian with disability, we create directional maps by determining the dominant direction of motion in each local spatiotemporal region using 3D orientation filters, and then uses the maps in real-time surveillance settings to detect pre-defined types. Mathematically, the derived algorithm regards the input features as the dictionary in sparse representation, and selects the features that minimize the residual output error iteratively, thus the resulting features have a direct correspondence to the performance requirements of the given problem. Furthermore, the proposed algorithm can be regarded as a sparse classifier, which selects discriminative features and classifies the training data simultaneously. Experimental results obtained using the extensive dataset show the superior performance of our method and thus demonstrate its robustness with the novel sparse representation-based disabled pedestrian detector.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detecting pedestrians with disability in surveillance videos is practical for the implementation of automated alert/assistance technology. This paper presents a novel approach for the dimensionality reduction which employs sparse representation to improve the generalization capability of a classifier. To characterize pedestrian with disability, we create directional maps by determining the dominant direction of motion in each local spatiotemporal region using 3D orientation filters, and then uses the maps in real-time surveillance settings to detect pre-defined types. Mathematically, the derived algorithm regards the input features as the dictionary in sparse representation, and selects the features that minimize the residual output error iteratively, thus the resulting features have a direct correspondence to the performance requirements of the given problem. Furthermore, the proposed algorithm can be regarded as a sparse classifier, which selects discriminative features and classifies the training data simultaneously. Experimental results obtained using the extensive dataset show the superior performance of our method and thus demonstrate its robustness with the novel sparse representation-based disabled pedestrian detector.
基于稀疏表示的鲁棒轮椅行人检测
在监控视频中检测残疾行人对于实施自动警报/辅助技术是实用的。本文提出了一种利用稀疏表示来提高分类器泛化能力的降维方法。为了描述残疾行人的特征,我们使用3D方向过滤器确定每个局部时空区域的主要运动方向,从而创建方向地图,然后在实时监控设置中使用这些地图来检测预定义的类型。在数学上,导出的算法将输入特征作为稀疏表示的字典,迭代地选择输出残差最小的特征,从而得到的特征与给定问题的性能要求直接对应。此外,该算法可以看作是一个稀疏分类器,它可以选择判别特征并同时对训练数据进行分类。使用大量数据集获得的实验结果表明,我们的方法具有优越的性能,从而证明了它对基于稀疏表示的新型残疾行人检测器的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信