Giacomo Veneri, P. Piu, P. Federighi, F. Rosini, A. Federico, A. Rufa
{"title":"Eye fixations identification based on statistical analysis - Case study","authors":"Giacomo Veneri, P. Piu, P. Federighi, F. Rosini, A. Federico, A. Rufa","doi":"10.1109/CIP.2010.5604221","DOIUrl":null,"url":null,"abstract":"Eye movement is the most simple and repetitive movement that enable humans to interact with the environment. The common daily activities, such as watching television or reading a book, involve this natural activity which consists of rapidly shifting our gaze from one region to another. The identification of the main components of eye movement during visual exploration such as fixations and saccades, is the objective of the analysis of eye movements in various contexts ranging from basic neuro sciences and visual sciences to virtual reality interactions and robotics. However, many of the algorithms that detect fixations present a number of problems. In this article, we present a new fixation identification algorithm based on the analysis of variance and F-test. We present the new algorithm and we compare it with the common fixations algorithm based on dispersion. To demonstrate the performance of our approach we tested the algorithm in a group of healthy subjects.","PeriodicalId":171474,"journal":{"name":"2010 2nd International Workshop on Cognitive Information Processing","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Cognitive Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIP.2010.5604221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Eye movement is the most simple and repetitive movement that enable humans to interact with the environment. The common daily activities, such as watching television or reading a book, involve this natural activity which consists of rapidly shifting our gaze from one region to another. The identification of the main components of eye movement during visual exploration such as fixations and saccades, is the objective of the analysis of eye movements in various contexts ranging from basic neuro sciences and visual sciences to virtual reality interactions and robotics. However, many of the algorithms that detect fixations present a number of problems. In this article, we present a new fixation identification algorithm based on the analysis of variance and F-test. We present the new algorithm and we compare it with the common fixations algorithm based on dispersion. To demonstrate the performance of our approach we tested the algorithm in a group of healthy subjects.