Reference-driven undersampled MRI reconstruction using automated stopping deep image prior

Guisong Wang, Xiaofeng Du, Yanhua Qin, Yifan He
{"title":"Reference-driven undersampled MRI reconstruction using automated stopping deep image prior","authors":"Guisong Wang, Xiaofeng Du, Yanhua Qin, Yifan He","doi":"10.1117/12.2644282","DOIUrl":null,"url":null,"abstract":"Magnetic resonance image (MRI) reconstruction from undersampled k-space data using unsupervised learning methods suffers from insufficient a priori knowledge and the lack of stopping criterion. This work introduces a high-resolution reference image to tackle these issues. Specifically, we explicitly broadcast the reference image into the proposed network, transferring the reference image structure priors to the recovered image. In addition, the reference image helps to develop a criterion to determine the best-reconstructed image, so training stops automatically once the conditions are met. Experimental results show that the proposed method can reduce artifacts without using a priori training set.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"12342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic resonance image (MRI) reconstruction from undersampled k-space data using unsupervised learning methods suffers from insufficient a priori knowledge and the lack of stopping criterion. This work introduces a high-resolution reference image to tackle these issues. Specifically, we explicitly broadcast the reference image into the proposed network, transferring the reference image structure priors to the recovered image. In addition, the reference image helps to develop a criterion to determine the best-reconstructed image, so training stops automatically once the conditions are met. Experimental results show that the proposed method can reduce artifacts without using a priori training set.
使用自动停止深度图像先验的参考驱动欠采样MRI重建
利用无监督学习方法对欠采样k空间数据进行磁共振图像重建,存在先验知识不足和缺乏停止准则的问题。这项工作引入了一个高分辨率的参考图像来解决这些问题。具体来说,我们明确地将参考图像广播到所提出的网络中,将参考图像结构优先于恢复图像。此外,参考图像有助于形成确定最佳重构图像的标准,因此一旦条件满足,训练就会自动停止。实验结果表明,该方法可以在不使用先验训练集的情况下减少伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信