Scheduling Multi-tenant Cloud Workloads on Accelerator-Based Systems

D. Sengupta, Anshuman Goswami, K. Schwan, K. Pallavi
{"title":"Scheduling Multi-tenant Cloud Workloads on Accelerator-Based Systems","authors":"D. Sengupta, Anshuman Goswami, K. Schwan, K. Pallavi","doi":"10.1109/SC.2014.47","DOIUrl":null,"url":null,"abstract":"Accelerator-based systems are making rapid inroads into becoming platforms of choice for high end cloud services. There is a need therefore, to move from the current model in which high performance applications explicitly and programmatically select the GPU devices on which to run, to a dynamic model where GPUs are treated as first class schedulable entities. The Strings scheduler realizes this vision by decomposing the GPU scheduling problem into a combination of load balancing and per-device scheduling. (i) Device-level scheduling efficiently uses all of a GPU's hardware resources, including its computational and data movement engines, and (ii) load balancing goes beyond obtaining high throughput, to ensure fairness through prioritizing GPU requests that have attained least service. With its methods, Strings achieves improvements in system throughput and fairness of up to 8.70× and 13%, respectively, compared to the CUDA runtime.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Accelerator-based systems are making rapid inroads into becoming platforms of choice for high end cloud services. There is a need therefore, to move from the current model in which high performance applications explicitly and programmatically select the GPU devices on which to run, to a dynamic model where GPUs are treated as first class schedulable entities. The Strings scheduler realizes this vision by decomposing the GPU scheduling problem into a combination of load balancing and per-device scheduling. (i) Device-level scheduling efficiently uses all of a GPU's hardware resources, including its computational and data movement engines, and (ii) load balancing goes beyond obtaining high throughput, to ensure fairness through prioritizing GPU requests that have attained least service. With its methods, Strings achieves improvements in system throughput and fairness of up to 8.70× and 13%, respectively, compared to the CUDA runtime.
在基于加速器的系统上调度多租户云工作负载
基于加速器的系统正迅速成为高端云服务的首选平台。因此,有必要从当前的模型(高性能应用程序显式地、可编程地选择GPU设备在其上运行)转向一个动态模型(GPU被视为一流的可调度实体)。字符串调度程序通过将GPU调度问题分解为负载平衡和每个设备调度的组合来实现这一愿景。(i)设备级调度有效地使用GPU的所有硬件资源,包括其计算和数据移动引擎;(ii)负载平衡超越了获得高吞吐量,通过优先考虑获得最少服务的GPU请求来确保公平性。与CUDA运行时相比,string在系统吞吐量和公平性方面分别提高了8.70倍和13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信