Adaptive IMM-CFusion for a Remote IMM Track and Local Measurements

Rong Yang, Y. Bar-Shalom
{"title":"Adaptive IMM-CFusion for a Remote IMM Track and Local Measurements","authors":"Rong Yang, Y. Bar-Shalom","doi":"10.23919/FUSION45008.2020.9190354","DOIUrl":null,"url":null,"abstract":"The problem addressed in this paper is the tracking a maneuvering target in a distributed sensor network using a real-world-motivated fusion configuration. The local node $\\mathrm{S}_{\\mathrm{L}}$ receives a track from the remote node $\\mathrm{S}_{\\mathrm{R}}$ generated by its Interacting Multiple Model (IMM) estimator, and the “inside information” such as motion models, mode probabilities and mode-conditioned estimates of the remote track is unknown. The local node $\\mathrm{S}_{\\mathrm{L}}$ has its own measurements which need to be fused with the remote IMM track. This problem can be solved using an existing technique with the following steps: 1) generate a $\\mathrm{S}_{\\mathrm{L}}$ track based on its own measurements; 2) perform Track-to-Track Fusion (T2TF) on $\\mathrm{S}_{\\mathrm{R}}$ and $\\mathrm{S}_{L}$ tracks. This paper will develop an alternative approach to fuse the remote IMM track and the local measurements directly. We called it the IMM Cumulated information Fusion (IMM-CFusion). The IMM-CFusion estimates the cumulated information of the local SLmeasurements with multiple models, and then fuses this cumulated information with the remote IMM track state. The IMM-CFusion shows better performance than the T2TF approach in a test case.","PeriodicalId":419881,"journal":{"name":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FUSION45008.2020.9190354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem addressed in this paper is the tracking a maneuvering target in a distributed sensor network using a real-world-motivated fusion configuration. The local node $\mathrm{S}_{\mathrm{L}}$ receives a track from the remote node $\mathrm{S}_{\mathrm{R}}$ generated by its Interacting Multiple Model (IMM) estimator, and the “inside information” such as motion models, mode probabilities and mode-conditioned estimates of the remote track is unknown. The local node $\mathrm{S}_{\mathrm{L}}$ has its own measurements which need to be fused with the remote IMM track. This problem can be solved using an existing technique with the following steps: 1) generate a $\mathrm{S}_{\mathrm{L}}$ track based on its own measurements; 2) perform Track-to-Track Fusion (T2TF) on $\mathrm{S}_{\mathrm{R}}$ and $\mathrm{S}_{L}$ tracks. This paper will develop an alternative approach to fuse the remote IMM track and the local measurements directly. We called it the IMM Cumulated information Fusion (IMM-CFusion). The IMM-CFusion estimates the cumulated information of the local SLmeasurements with multiple models, and then fuses this cumulated information with the remote IMM track state. The IMM-CFusion shows better performance than the T2TF approach in a test case.
远程IMM跟踪和本地测量的自适应IMM融合
本文研究了分布式传感器网络中机动目标的跟踪问题。本地节点$\mathrm{S}_{\mathrm{L}}$从远程节点$\mathrm{S}_{\mathrm{R}}$接收由其交互多模型(IMM)估计器生成的航迹,并且远程航迹的“内部信息”如运动模型、模式概率和模式条件估计是未知的。本地节点$\mathrm{S}_{\mathrm{L}}$有自己的测量值,需要与远程IMM航迹融合。这个问题可以使用现有的技术通过以下步骤来解决:1)根据自己的测量值生成$\ mathm {S}_{\ mathm {L}}$轨道;2)在$\mathrm{S}_{\mathrm{R}}$和$\mathrm{S}_{L}$轨道上执行曲目到曲目融合(T2TF)。本文将开发一种直接融合远程IMM轨迹和本地测量的替代方法。我们称之为IMM累积信息融合(IMM- cfusion)。IMM- cfusion利用多个模型估计本地slm测量的累积信息,然后将这些累积信息与远程IMM航迹状态融合。在测试用例中,IMM-CFusion比T2TF方法表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信