Land cover mapping classification based on multi Restricted Boltzmann machines and Support Vector Machines

Apiwat Lekfuangfu, T. Kasetkasem, P. Rakwatin, Sararak Tanarat, I. Kumazawa, T. Chanwimaluang
{"title":"Land cover mapping classification based on multi Restricted Boltzmann machines and Support Vector Machines","authors":"Apiwat Lekfuangfu, T. Kasetkasem, P. Rakwatin, Sararak Tanarat, I. Kumazawa, T. Chanwimaluang","doi":"10.1109/ECTICON.2016.7561344","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced a land cover mapping algorithm that combines for unsupervised and supervised classification techniques, namely, the Restricted Boltzmann machines (RBMs) and Support Vector Machines (SVMs). The idea is to take advantage of unsupervised classifications that can segment an image into regions without any training samples, and the supervised classification that can identify the underlying land cover class for each segment. The QUICKBIRD satellite image data covering a part of Kasetsart University was used for evaluation. Experimental results showed that proposed method can classify image data successfully, and texture information can increase the classification performance of remote sensing classification.","PeriodicalId":200661,"journal":{"name":"2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2016.7561344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduced a land cover mapping algorithm that combines for unsupervised and supervised classification techniques, namely, the Restricted Boltzmann machines (RBMs) and Support Vector Machines (SVMs). The idea is to take advantage of unsupervised classifications that can segment an image into regions without any training samples, and the supervised classification that can identify the underlying land cover class for each segment. The QUICKBIRD satellite image data covering a part of Kasetsart University was used for evaluation. Experimental results showed that proposed method can classify image data successfully, and texture information can increase the classification performance of remote sensing classification.
基于多受限玻尔兹曼机和支持向量机的土地覆盖制图分类
本文介绍了一种结合无监督和监督分类技术的土地覆盖制图算法,即受限玻尔兹曼机(rbm)和支持向量机(svm)。这个想法是利用无监督分类,它可以在没有任何训练样本的情况下将图像分割成区域,而监督分类可以识别每个部分的潜在土地覆盖类别。用于评价的是覆盖Kasetsart大学部分地区的QUICKBIRD卫星图像数据。实验结果表明,该方法可以成功地对图像数据进行分类,并且纹理信息可以提高遥感分类的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信