{"title":"A binding algorithm in high-level synthesis for path delay testability","authors":"Yuki Yoshikawa","doi":"10.1109/ASPDAC.2013.6509653","DOIUrl":null,"url":null,"abstract":"A binding method in high-level synthesis for path delay testability is proposed in this paper. For a given scheduled data flow graph, the proposed method synthesizes a path delay testable RTL datapath and its controller. Every path in the datapath is two pattern testable with the controller if the path is activated in the functional operation, i.e., the path is not false path. Our experimental results show that the proposed method can synthesize such RTL circuits with small area overhead compared with that augmented by some DFT techniques such as scan design.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A binding method in high-level synthesis for path delay testability is proposed in this paper. For a given scheduled data flow graph, the proposed method synthesizes a path delay testable RTL datapath and its controller. Every path in the datapath is two pattern testable with the controller if the path is activated in the functional operation, i.e., the path is not false path. Our experimental results show that the proposed method can synthesize such RTL circuits with small area overhead compared with that augmented by some DFT techniques such as scan design.