The page number of genus g graphs is (g)

Lenwood S. Heath, S. Istrail
{"title":"The page number of genus g graphs is (g)","authors":"Lenwood S. Heath, S. Istrail","doi":"10.1145/28395.28437","DOIUrl":null,"url":null,"abstract":"This paper disproves the conjecture that graphs of fixed genus g ≤ 1 have unbounded pagenumber (Bernhart and Kainen, 1979). We show that genus g graphs can be embedded in &Ogr;(g) pages, and derive an &OHgr;(√g) lower bound. We present the first algorithm in the literature for embedding an arbitrary graph in a book with a non-trivial upper bound on the number of pages. We first compute the genus g of a graph using the algorithm of Filotti, Miller, Reif (1979), and then apply our (optimal-time) algorithm for obtaining an &Ogr;(g) page embedding. An important aspect of our construction is a new decomposition theorem, of independent interest, for a graph embedded on a surface. Book embedding has application in several areas, two of which are directly related to the results we obtain: fault-tolerant VLSI and complexity theory.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper disproves the conjecture that graphs of fixed genus g ≤ 1 have unbounded pagenumber (Bernhart and Kainen, 1979). We show that genus g graphs can be embedded in &Ogr;(g) pages, and derive an &OHgr;(√g) lower bound. We present the first algorithm in the literature for embedding an arbitrary graph in a book with a non-trivial upper bound on the number of pages. We first compute the genus g of a graph using the algorithm of Filotti, Miller, Reif (1979), and then apply our (optimal-time) algorithm for obtaining an &Ogr;(g) page embedding. An important aspect of our construction is a new decomposition theorem, of independent interest, for a graph embedded on a surface. Book embedding has application in several areas, two of which are directly related to the results we obtain: fault-tolerant VLSI and complexity theory.
g属图的页码为(g)
本文反驳了固定格g≤1的图具有无界页数的猜想(Bernhart and Kainen, 1979)。我们证明了g属图可以嵌入到&Ogr;(g)页中,并推导出& ohr;(√g)下界。本文提出了文献中第一个在具有非平凡页数上界的书中嵌入任意图的算法。我们首先使用Filotti, Miller, Reif(1979)的算法计算图的g属,然后应用我们的(最优时间)算法来获得&Ogr;(g)页面嵌入。我们构造的一个重要方面是一个新的分解定理,对于嵌入在曲面上的图来说,这是一个独立的兴趣。书嵌入在许多领域都有应用,其中两个与我们得到的结果直接相关:VLSI的容错和复杂性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信