{"title":"Low-Rate Non-Intrusive Appliance Load Monitoring Based on Graph Signal Processing","authors":"Bing Zhang, Shengjie Zhao, Qingjiang Shi, Rongqing Zhang","doi":"10.1109/SPAC49953.2019.237866","DOIUrl":null,"url":null,"abstract":"Thanks to the large-scale smart meters deployments around the world, non-intrusive appliance load monitoring (NILM) is receiving popularity. It aims to disaggregate the total electricity load of a home into individual appliances without resorting to any specific appliance power monitors. NILM is worthy of broad attention owing to its facilitation in energy savings. This paper regards NILM as a classification task and proposes a two-step method based on graph signal processing (GSP). In the first step, a smoothest solution is obtained by minimizing the regularization term. In the second step, gradient projection method, which uses the obtained minimizer as a start point, is adopted to optimize the while objective function, where NILM is regarded as a constrained nonlinear programming problem. The experiment results based on the open-access data set REDD clearly demonstrate that the proposed GSP-based method achieves improved performance compared with other state-of-the-art low-rate NILM approaches.","PeriodicalId":410003,"journal":{"name":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC49953.2019.237866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Thanks to the large-scale smart meters deployments around the world, non-intrusive appliance load monitoring (NILM) is receiving popularity. It aims to disaggregate the total electricity load of a home into individual appliances without resorting to any specific appliance power monitors. NILM is worthy of broad attention owing to its facilitation in energy savings. This paper regards NILM as a classification task and proposes a two-step method based on graph signal processing (GSP). In the first step, a smoothest solution is obtained by minimizing the regularization term. In the second step, gradient projection method, which uses the obtained minimizer as a start point, is adopted to optimize the while objective function, where NILM is regarded as a constrained nonlinear programming problem. The experiment results based on the open-access data set REDD clearly demonstrate that the proposed GSP-based method achieves improved performance compared with other state-of-the-art low-rate NILM approaches.