Convolutional Neural Networks Based Plant Leaf Diseases Detection Scheme

Pranav Pratap Singh, R. Kaushik, Harpreet Singh, Neeraj Kumar, P. Rana
{"title":"Convolutional Neural Networks Based Plant Leaf Diseases Detection Scheme","authors":"Pranav Pratap Singh, R. Kaushik, Harpreet Singh, Neeraj Kumar, P. Rana","doi":"10.1109/GCWkshps45667.2019.9024434","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an optimal scheme to identify various plant leaf diseases.We explore various optimizers and loss function in the proposed scheme to find the best possible combination to get most accurate output on our datasets(plant leaves). Some of the optimizers used in the proposal are Adaptive Momentum, Root Mean Square Propogation, Adaptive Gradi- ent Descent, Nestrov Accelerated Adam,and Stochastic Graient Descent.Also, various loss functions used in our keras model are Mean Squared Error, Categorical Crossentropy, and Cosine Proximity. Leaf datasets used in research consisted of few (i) Healthy datasets and (ii) Diseased leaf datasets. From the results obtained, it is proved that CNN has significantly higher accuracy in comparison to the Random Forest classification models used for the same purposes in the past.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose an optimal scheme to identify various plant leaf diseases.We explore various optimizers and loss function in the proposed scheme to find the best possible combination to get most accurate output on our datasets(plant leaves). Some of the optimizers used in the proposal are Adaptive Momentum, Root Mean Square Propogation, Adaptive Gradi- ent Descent, Nestrov Accelerated Adam,and Stochastic Graient Descent.Also, various loss functions used in our keras model are Mean Squared Error, Categorical Crossentropy, and Cosine Proximity. Leaf datasets used in research consisted of few (i) Healthy datasets and (ii) Diseased leaf datasets. From the results obtained, it is proved that CNN has significantly higher accuracy in comparison to the Random Forest classification models used for the same purposes in the past.
基于卷积神经网络的植物叶片病害检测方案
在本文中,我们提出了一个最佳方案,以识别各种植物叶片病害。我们在提出的方案中探索了各种优化器和损失函数,以找到最佳可能的组合,从而在我们的数据集(植物叶片)上获得最准确的输出。该建议中使用的一些优化器是自适应动量,均方根传播,自适应梯度下降,Nestrov加速亚当和随机梯度下降。此外,我们的keras模型中使用的各种损失函数是均方误差,分类交叉熵和余弦接近。研究中使用的叶片数据集包括很少的(i)健康数据集和(ii)患病叶片数据集。从得到的结果可以看出,相比于以往用于相同目的的Random Forest分类模型,CNN具有明显更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信